74 resultados para Encryption Algorithm
em Universidad Polit
Resumo:
Los algoritmos basados en registros de desplazamiento con realimentación (en inglés FSR) se han utilizado como generadores de flujos pseudoaleatorios en aplicaciones con recursos limitados como los sistemas de apertura sin llave. Se considera canal primario a aquel que se utiliza para realizar una transmisión de información. La aparición de los ataques de canal auxiliar (en inglés SCA), que explotan información filtrada inintencionadamente a través de canales laterales como el consumo, las emisiones electromagnéticas o el tiempo empleado, supone una grave amenaza para estas aplicaciones, dado que los dispositivos son accesibles por un atacante. El objetivo de esta tesis es proporcionar un conjunto de protecciones que se puedan aplicar de forma automática y que utilicen recursos ya disponibles, evitando un incremento sustancial en los costes y alargando la vida útil de aplicaciones que puedan estar desplegadas. Explotamos el paralelismo existente en algoritmos FSR, ya que sólo hay 1 bit de diferencia entre estados de rondas consecutivas. Realizamos aportaciones en tres niveles: a nivel de sistema, utilizando un coprocesador reconfigurable, a través del compilador y a nivel de bit, aprovechando los recursos disponibles en el procesador. Proponemos un marco de trabajo que nos permite evaluar implementaciones de un algoritmo incluyendo los efectos introducidos por el compilador considerando que el atacante es experto. En el campo de los ataques, hemos propuesto un nuevo ataque diferencial que se adapta mejor a las condiciones de las implementaciones software de FSR, en las que el consumo entre rondas es muy similar. SORU2 es un co-procesador vectorial reconfigurable propuesto para reducir el consumo energético en aplicaciones con paralelismo y basadas en el uso de bucles. Proponemos el uso de SORU2, además, para ejecutar algoritmos basados en FSR de forma segura. Al ser reconfigurable, no supone un sobrecoste en recursos, ya que no está dedicado en exclusiva al algoritmo de cifrado. Proponemos una configuración que ejecuta múltiples algoritmos de cifrado similares de forma simultánea, con distintas implementaciones y claves. A partir de una implementación sin protecciones, que demostramos que es completamente vulnerable ante SCA, obtenemos una implementación segura a los ataques que hemos realizado. A nivel de compilador, proponemos un mecanismo para evaluar los efectos de las secuencias de optimización del compilador sobre una implementación. El número de posibles secuencias de optimizaciones de compilador es extremadamente alto. El marco de trabajo propuesto incluye un algoritmo para la selección de las secuencias de optimización a considerar. Debido a que las optimizaciones del compilador transforman las implementaciones, se pueden generar automáticamente implementaciones diferentes combinamos para incrementar la seguridad ante SCA. Proponemos 2 mecanismos de aplicación de estas contramedidas, que aumentan la seguridad de la implementación original sin poder considerarse seguras. Finalmente hemos propuesto la ejecución paralela a nivel de bit del algoritmo en un procesador. Utilizamos la forma algebraica normal del algoritmo, que automáticamente se paraleliza. La implementación sobre el algoritmo evaluado mejora en rendimiento y evita que se filtre información por una ejecución dependiente de datos. Sin embargo, es más vulnerable ante ataques diferenciales que la implementación original. Proponemos una modificación del algoritmo para obtener una implementación segura, descartando parcialmente ejecuciones del algoritmo, de forma aleatoria. Esta implementación no introduce una sobrecarga en rendimiento comparada con las implementaciones originales. En definitiva, hemos propuesto varios mecanismos originales a distintos niveles para introducir aleatoridad en implementaciones de algoritmos FSR sin incrementar sustancialmente los recursos necesarios. ABSTRACT Feedback Shift Registers (FSR) have been traditionally used to implement pseudorandom sequence generators. These generators are used in Stream ciphers in systems with tight resource constraints, such as Remote Keyless Entry. When communicating electronic devices, the primary channel is the one used to transmit the information. Side-Channel Attack (SCA) use additional information leaking from the actual implementation, including power consumption, electromagnetic emissions or timing information. Side-Channel Attacks (SCA) are a serious threat to FSR-based applications, as an attacker usually has physical access to the devices. The main objective of this Ph.D. thesis is to provide a set of countermeasures that can be applied automatically using the available resources, avoiding a significant cost overhead and extending the useful life of deployed systems. If possible, we propose to take advantage of the inherent parallelism of FSR-based algorithms, as the state of a FSR differs from previous values only in 1-bit. We have contributed in three different levels: architecture (using a reconfigurable co-processor), using compiler optimizations, and at bit level, making the most of the resources available at the processor. We have developed a framework to evaluate implementations of an algorithm including the effects introduced by the compiler. We consider the presence of an expert attacker with great knowledge on the application and the device. Regarding SCA, we have presented a new differential SCA that performs better than traditional SCA on software FSR-based algorithms, where the leaked values are similar between rounds. SORU2 is a reconfigurable vector co-processor. It has been developed to reduce energy consumption in loop-based applications with parallelism. In addition, we propose its use for secure implementations of FSR-based algorithms. The cost overhead is discarded as the co-processor is not exclusively dedicated to the encryption algorithm. We present a co-processor configuration that executes multiple simultaneous encryptions, using different implementations and keys. From a basic implementation, which is proved to be vulnerable to SCA, we obtain an implementation where the SCA applied were unsuccessful. At compiler level, we use the framework to evaluate the effect of sequences of compiler optimization passes on a software implementation. There are many optimization passes available. The optimization sequences are combinations of the available passes. The amount of sequences is extremely high. The framework includes an algorithm for the selection of interesting sequences that require detailed evaluation. As existing compiler optimizations transform the software implementation, using different optimization sequences we can automatically generate different implementations. We propose to randomly switch between the generated implementations to increase the resistance against SCA.We propose two countermeasures. The results show that, although they increase the resistance against SCA, the resulting implementations are not secure. At bit level, we propose to exploit bit level parallelism of FSR-based implementations using pseudo bitslice implementation in a wireless node processor. The bitslice implementation is automatically obtained from the Algebraic Normal Form of the algorithm. The results show a performance improvement, avoiding timing information leakage, but increasing the vulnerability against differential SCA.We provide a secure version of the algorithm by randomly discarding part of the data obtained. The overhead in performance is negligible when compared to the original implementations. To summarize, we have proposed a set of original countermeasures at different levels that introduce randomness in FSR-based algorithms avoiding a heavy overhead on the resources required.
Resumo:
LLas nuevas tecnologías orientadas a la nube, el internet de las cosas o las tendencias "as a service" se basan en el almacenamiento y procesamiento de datos en servidores remotos. Para garantizar la seguridad en la comunicación de dichos datos al servidor remoto, y en el manejo de los mismos en dicho servidor, se hace uso de diferentes esquemas criptográficos. Tradicionalmente, dichos sistemas criptográficos se centran en encriptar los datos mientras no sea necesario procesarlos (es decir, durante la comunicación y almacenamiento de los mismos). Sin embargo, una vez es necesario procesar dichos datos encriptados (en el servidor remoto), es necesario desencriptarlos, momento en el cual un intruso en dicho servidor podría a acceder a datos sensibles de usuarios del mismo. Es más, este enfoque tradicional necesita que el servidor sea capaz de desencriptar dichos datos, teniendo que confiar en la integridad de dicho servidor de no comprometer los datos. Como posible solución a estos problemas, surgen los esquemas de encriptación homomórficos completos. Un esquema homomórfico completo no requiere desencriptar los datos para operar con ellos, sino que es capaz de realizar las operaciones sobre los datos encriptados, manteniendo un homomorfismo entre el mensaje cifrado y el mensaje plano. De esta manera, cualquier intruso en el sistema no podría robar más que textos cifrados, siendo imposible un robo de los datos sensibles sin un robo de las claves de cifrado. Sin embargo, los esquemas de encriptación homomórfica son, actualmente, drás-ticamente lentos comparados con otros esquemas de encriptación clásicos. Una op¬eración en el anillo del texto plano puede conllevar numerosas operaciones en el anillo del texto encriptado. Por esta razón, están surgiendo distintos planteamientos sobre como acelerar estos esquemas para un uso práctico. Una de las propuestas para acelerar los esquemas homomórficos consiste en el uso de High-Performance Computing (HPC) usando FPGAs (Field Programmable Gate Arrays). Una FPGA es un dispositivo semiconductor que contiene bloques de lógica cuya interconexión y funcionalidad puede ser reprogramada. Al compilar para FPGAs, se genera un circuito hardware específico para el algorithmo proporcionado, en lugar de hacer uso de instrucciones en una máquina universal, lo que supone una gran ventaja con respecto a CPUs. Las FPGAs tienen, por tanto, claras difrencias con respecto a CPUs: -Arquitectura en pipeline: permite la obtención de outputs sucesivos en tiempo constante -Posibilidad de tener multiples pipes para computación concurrente/paralela. Así, en este proyecto: -Se realizan diferentes implementaciones de esquemas homomórficos en sistemas basados en FPGAs. -Se analizan y estudian las ventajas y desventajas de los esquemas criptográficos en sistemas basados en FPGAs, comparando con proyectos relacionados. -Se comparan las implementaciones con trabajos relacionados New cloud-based technologies, the internet of things or "as a service" trends are based in data storage and processing in a remote server. In order to guarantee a secure communication and handling of data, cryptographic schemes are used. Tradi¬tionally, these cryptographic schemes focus on guaranteeing the security of data while storing and transferring it, not while operating with it. Therefore, once the server has to operate with that encrypted data, it first decrypts it, exposing unencrypted data to intruders in the server. Moreover, the whole traditional scheme is based on the assumption the server is reliable, giving it enough credentials to decipher data to process it. As a possible solution for this issues, fully homomorphic encryption(FHE) schemes is introduced. A fully homomorphic scheme does not require data decryption to operate, but rather operates over the cyphertext ring, keeping an homomorphism between the cyphertext ring and the plaintext ring. As a result, an outsider could only obtain encrypted data, making it impossible to retrieve the actual sensitive data without its associated cypher keys. However, using homomorphic encryption(HE) schemes impacts performance dras-tically, slowing it down. One operation in the plaintext space can lead to several operations in the cyphertext space. Because of this, different approaches address the problem of speeding up these schemes in order to become practical. One of these approaches consists in the use of High-Performance Computing (HPC) using FPGAs (Field Programmable Gate Array). An FPGA is an integrated circuit designed to be configured by a customer or a designer after manufacturing - hence "field-programmable". Compiling into FPGA means generating a circuit (hardware) specific for that algorithm, instead of having an universal machine and generating a set of machine instructions. FPGAs have, thus, clear differences compared to CPUs: - Pipeline architecture, which allows obtaining successive outputs in constant time. -Possibility of having multiple pipes for concurrent/parallel computation. Thereby, In this project: -We present different implementations of FHE schemes in FPGA-based systems. -We analyse and study advantages and drawbacks of the implemented FHE schemes, compared to related work.
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
Se definen conceptos y se aplica el teorema de Valverde para escribir un algoritmo que computa bases de similaridades. This paper studies sorne theory and methods to build a representation theorem basis of a similarity from the basis of its subsimilarities, providing an alternative recursive method to compute the basis of a similarity.
Resumo:
Many context-aware applications rely on the knowledge of the position of the user and the surrounding objects to provide advanced, personalized and real-time services. In wide-area deployments, a routing protocol is needed to collect the location information from distant nodes. In this paper, we propose a new source-initiated (on demand) routing protocol for location-aware applications in IEEE 802.15.4 wireless sensor networks. This protocol uses a low power MAC layer to maximize the lifetime of the network while maintaining the communication delay to a low value. Its performance is assessed through experimental tests that show a good trade-off between power consumption and time delay in the localization of a mobile device.
Resumo:
The problem of fairly distributing the capacity of a network among a set of sessions has been widely studied. In this problem, each session connects via a single path a source and a destination, and its goal is to maximize its assigned transmission rate (i.e., its throughput). Since the links of the network have limited bandwidths, some criterion has to be defined to fairly distribute their capacity among the sessions. A popular criterion is max-min fairness that, in short, guarantees that each session i gets a rate λi such that no session s can increase λs without causing another session s' to end up with a rate λs/ <; λs. Many max-min fair algorithms have been proposed, both centralized and distributed. However, to our knowledge, all proposed distributed algorithms require control data being continuously transmitted to recompute the max-min fair rates when needed (because none of them has mechanisms to detect convergence to the max-min fair rates). In this paper we propose B-Neck, a distributed max-min fair algorithm that is also quiescent. This means that, in absence of changes (i.e., session arrivals or departures), once the max min rates have been computed, B-Neck stops generating network traffic. Quiescence is a key design concept of B-Neck, because B-Neck routers are capable of detecting and notifying changes in the convergence conditions of max-min fair rates. As far as we know, B-Neck is the first distributed max-min fair algorithm that does not require a continuous injection of control traffic to compute the rates. The correctness of B-Neck is formally proved, and extensive simulations are conducted. In them, it is shown that B-Neck converges relatively fast and behaves nicely in presence of sessions arriving and departing.
Resumo:
This paper describes the basic tools to work with wireless sensors. TinyOShas a componentbased architecture which enables rapid innovation and implementation while minimizing code size as required by the severe memory constraints inherent in sensor networks. TinyOS's component library includes network protocols, distributed services, sensor drivers, and data acquisition tools ? all of which can be used asia or be further refined for a custom application. TinyOS was originally developed as a research project at the University of California Berkeley, but has since grown to have an international community of developers and users. Some algorithms concerning packet routing are shown. Incar entertainment systems can be based on wireless sensors in order to obtain information from Internet, but routing protocols must be implemented in order to avoid bottleneck problems. Ant Colony algorithms are really useful in such cases, therefore they can be embedded into the sensors to perform such routing task.
Resumo:
This paper describes a new exact algorithm PASS for the vertex coloring problem based on the well known DSATUR algorithm. At each step DSATUR maximizes saturation degree to select a new candidate vertex to color, breaking ties by maximum degree w.r.t. uncolored vertices. Later Sewell introduced a new tiebreaking strategy, which evaluated available colors for each vertex explicitly. PASS differs from Sewell in that it restricts its application to a particular set of vertices. Overall performance is improved when the new strategy is applied selectively instead of at every step. The paper also reports systematic experiments over 1500 random graphs and a subset of the DIMACS color benchmark.
Resumo:
This paper describes new improvements for BB-MaxClique (San Segundo et al. in Comput Oper Resour 38(2):571–581, 2011 ), a leading maximum clique algorithm which uses bit strings to efficiently compute basic operations during search by bit masking. Improvements include a recently described recoloring strategy in Tomita et al. (Proceedings of the 4th International Workshop on Algorithms and Computation. Lecture Notes in Computer Science, vol 5942. Springer, Berlin, pp 191–203, 2010 ), which is now integrated in the bit string framework, as well as different optimization strategies for fast bit scanning. Reported results over DIMACS and random graphs show that the new variants improve over previous BB-MaxClique for a vast majority of cases. It is also established that recoloring is mainly useful for graphs with high densities.
Resumo:
A method to analyze parabolic reflectors with arbitrary piecewise rim is presented in this communication. This kind of reflectors, when operating as collimators in compact range facilities, needs to be large in terms of wavelength. Their analysis is very inefficient, when it is carried out with fullwave/MoM techniques, and it is not very appropriate for designing with PO techniques. Also, fast GO formulations do not offer enough accuracy to reach performance results. The proposed algorithm is based on a GO-PWS hybrid scheme, using analytical as well as non-analytical formulations. On one side, an analytical treatment of the polygonal rim reflectors is carried out. On the other side, non-analytical calculi are based on efficient operations, such as M2 order 2-dimensional FFT. A combination of these two techniques in the algorithm ensures real ad-hoc design capabilities, reached through analysis speedup. The purpose of the algorithm is to obtain an optimal conformal serrated-edge reflector design through the analysis of the field quality within the quiet zone that it is able to generate in its forward half space.
Resumo:
An aerodynamic optimization of the train aerodynamic characteristics in term of front wind action sensitivity is carried out in this paper. In particular, a genetic algorithm (GA) is used to perform a shape optimization study of a high-speed train nose. The nose is parametrically defined via Bézier Curves, including a wider range of geometries in the design space as possible optimal solutions. Using a GA, the main disadvantage to deal with is the large number of evaluations need before finding such optimal. Here it is proposed the use of metamodels to replace Navier-Stokes solver. Among all the posibilities, Rsponse Surface Models and Artificial Neural Networks (ANN) are considered. Best results of prediction and generalization are obtained with ANN and those are applied in GA code. The paper shows the feasibility of using GA in combination with ANN for this problem, and solutions achieved are included.
Resumo:
We describe how to use a Granular Linguistic Model of a Phenomenon (GLMP) to assess e-learning processes. We apply this technique to evaluate algorithm learning using the GRAPHs learning environment.
Resumo:
Animal tracking has been addressed by different initiatives over the last two decades. Most of them rely on satellite connectivity on every single node and lack of energy-saving strategies. This paper presents several new contributions on the tracking of dynamic heterogeneous asynchronous networks (primary nodes with GPS and secondary nodes with a kinetic generator) motivated by the animal tracking paradigm with random transmissions. A simple approach based on connectivity and coverage intersection is compared with more sophisticated algorithms based on ad-hoc implementations of distributed Kalman-based filters that integrate measurement information using Consensus principles in order to provide enhanced accuracy. Several simulations varying the coverage range, the random behavior of the kinetic generator (modeled as a Poisson Process) and the periodic activation of GPS are included. In addition, this study is enhanced with HW developments and implementations on commercial off-the-shelf equipment which show the feasibility for performing these proposals on real hardware.
Resumo:
Industrial applications of computer vision sometimes require detection of atypical objects that occur as small groups of pixels in digital images. These objects are difficult to single out because they are small and randomly distributed. In this work we propose an image segmentation method using the novel Ant System-based Clustering Algorithm (ASCA). ASCA models the foraging behaviour of ants, which move through the data space searching for high data-density regions, and leave pheromone trails on their path. The pheromone map is used to identify the exact number of clusters, and assign the pixels to these clusters using the pheromone gradient. We applied ASCA to detection of microcalcifications in digital mammograms and compared its performance with state-of-the-art clustering algorithms such as 1D Self-Organizing Map, k-Means, Fuzzy c-Means and Possibilistic Fuzzy c-Means. The main advantage of ASCA is that the number of clusters needs not to be known a priori. The experimental results show that ASCA is more efficient than the other algorithms in detecting small clusters of atypical data.
Resumo:
In this paper, we consider a scenario where 3D scenes are modeled through a View+Depth representation. This representation is to be used at the rendering side to generate synthetic views for free viewpoint video. The encoding of both type of data (view and depth) is carried out using two H.264/AVC encoders. In this scenario we address the reduction of the encoding complexity of depth data. Firstly, an analysis of the Mode Decision and Motion Estimation processes has been conducted for both view and depth sequences, in order to capture the correlation between them. Taking advantage of this correlation, we propose a fast mode decision and motion estimation algorithm for the depth encoding. Results show that the proposed algorithm reduces the computational burden with a negligible loss in terms of quality of the rendered synthetic views. Quality measurements have been conducted using the Video Quality Metric.