9 resultados para yield potential

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advanced wheat lines carrying the Hessian fly resistance gene H27 were obtained by backcrossing the wheat/Aegilops ventricosa introgression line, H-93-33, to commercial wheat cultivars as recurrent parents. The Acph-N v 1 marker linked to the gene H27 on the 4Nv chromosome of this line was used for marker assisted selection. Advanced lines were evaluated for Hessian fly resistance in field and growth chamber tests, and for other agronomic traits during several crop seasons at different localities of Spain. The hessian fly resistance levels of lines carrying the 4Nv chromosome introgression (4D/4Nv substitution and recombination lines that previously were classified by in situ hybridisation) were high, but always lower than that of their Ae. ventricosa progenitor. Introgression lines had higher grain yields in infested field trials than those without the 4Nv chromosome and their susceptible parents, but lower grain yields under high yield potential conditions. The 4Nv introgression was also associated with later heading, and lower tiller and grain numbers/m2 . In addition, it was associated with longer and more lax spikes, and higher values of grain weight and grain protein content. However, the glutenin and gliadin expression, as well as the bread-making performance, were similar to those of their recurrent parents

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The area cultivated using conservation tillage has recently increased in central Spain. However, soil compaction and water retention with conservation tillage still remains a genuine concern for landowners in this region be- cause of its potential effect on the crop growth and yield. The aim of this research is to determine the short- term influences of four tillage treatments on soil physical properties. In the experiment, bulk density, cone index, soil water potential, soil temperature and maize (Zea mays L.) productivity have been measured. A field experiment was established in spring of 2013 on a loamy soil. The experiment compared four tillage methods (zero tillage, ZT; reservoir tillage, RT; minimum tillage, MT; and conventional tillage, CT). Soil bulk density and soil cone index were measured during maize growing season and at harvesting time. Furthermore, the soil water potential was monitored by using a wireless sensors network with sensors at 20 and 40 cm depths. Also, soil temperatures were registered at depths of 5 and 12 cm. Results indicated that there were significant differ- ences between soil bulk density and cone index of ZT method and those of RT, MT, and CT, during the growing season; although, this difference was not significant at the time of harvesting in some soil layers. Overall, in most soil layers, tillage practice affected bulk density and cone index in the order: ZT N RT N MT N CT. Regardless oftheentireobservationperiod,results exhibited that soils under ZT and RT treatments usually resulted in higher water potential and lower soil temperature than the other two treatments at both soil depths. In addition, clear differences in maize grain yield were observed between ZT and CT treatments, with a grain yield (up to 15.4%) increase with the CT treatment. On the other hand, no significant differences among (RT, MT, and CT) on maizeyieldwerefound.Inconclusion,the impact of soil compaction increase and soil temperature decrease,pro- duced by ZT treatment is a potential reason for maize yield reduction in this tillage method. We found that RT could be certainly a viable option for farmers incentral Spain,particularly when switching to conservation tillage from conventional tillage. This technique showed a moderate and positive effect on soil physical properties and increased maize yields compared to ZT and MT, and provides an opportunity to stabilize maize yields compared to CT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reducing the gap between water-limited potential yield and actual yield in oil palm production systems through intensification is seen as an important option for sustainably increasing palm oil production. Simulation models can play an important role in quantifying water-limited potential yield, and therefore the scope for intensification, but no oil palm model exists that is both simple enough and at the same time incorporates sufficient plant physiological knowledge to be generally applicable across sites with different growing conditions. The objectives of this study therefore were to develop a model (PALMSIM) that simulates, on a monthly time step, the potential growth of oil palm as determined by solar radiation and to evaluate model performance against measured oil palm yields under optimal water and nutrient management for a range of sites across Indonesia and Malaysia. The maximum observed yield in the field matches the corresponding simulated yield for dry bunch weight with a RMSE of 1.7 Mg ha?1 year?1 against an observed yield of 18.8 Mg ha?1. Sensitivity analysis showed that PALMSIM is robust: simulated changes in yield caused by modifying the parameters by 10% are comparable to other tree crop model evaluations. While we acknowledge that, depending on the soils and climatic environment, yields may be often water limited, we suggest a relatively simple physiological approach to simulate potential yield, which can be usefully applied to high rainfall environments and is considered as a first step in developing an oil palm model that also simulates water-limited potential yield. To illustrate the application possibil- ities of the model, PALMSIM was used to create a potential yield map for Indonesia and Malaysia by sim- ulating the growth and yield at a resolution of 0.1?. This map of potential yield is considered as a first step towards a decision support tool that can identify potentially productive, but at the moment degraded sites in Indonesia and Malaysia. ?

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El Niño phenomenon is the leading mode of sea surface temperature interannual variability. It can affect weather patterns worldwide and therefore crop production. Crop models are useful tools for impact and predictability applications, allowing to obtain long time series of potential and attainable crop yield, unlike to available time series of observed crop yield for many countries. Using this tool, crop yield variability in a location of Iberia Peninsula (IP) has been previously studied, finding predictability from Pacific El Niño conditions. Nevertheless, the work has not been done for an extended area. The present work carries out an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The potential usefulness of this study is to apply the relationships found to improving crop forecasting in IP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Brazil, a low-latitude country characterized by its high availability and uniformity of solar radiation, the use of PV solar energy integrated in buildings is still incipient. However, at the moment there are several initiatives which give some hints that lead to think that there will be a change shortly. In countries where this technology is already a daily reality, such as Germany, Japan or Spain, the recommendations and basic criteria to avoid losses due to orientation and tilt are widespread. Extrapolating those measures used in high latitudes to all regions, without a previous deeper analysis, is standard practice. They do not always correspond to reality, what frequently leads to false assumptions and may become an obstacle in a country which is taking the first step in this area. In this paper, the solar potential yield for different surfaces in Brazilian cities (located at latitudes between 0° and 30°S) are analyzed with the aim of providing the necessary tools to evaluate the suitability of the buildings’ envelopes for photovoltaic use

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental problems related to the use of synthetic fertilizers and to organic waste management have led to increased interest in the use of organic materials as an alternative source of nutrients for crops, but this is also associated with N2O emissions. There has been an increasing amount of research into the effects of using different types of fertilization on N2O emissions under Mediterranean climatic conditions, but the findings have sometimes been rather contradictory. Available information also suggests that water management could exert a high influence on N2O emissions. In this context, we have reviewed the current scientific knowledge, including an analysis of the effect of fertilizer type and water management on direct N2O emissions. A meta-analysis of compliant reviewed experiments revealed significantly lower N2O emissions for organic as opposed to synthetic fertilizers (23% reduction). When organic materials were segregated in solid and liquid, only solid organic fertilizer emissions were significantly lower than those of synthetic fertilizers (28% reduction in cumulative emissions). The EF is similar to the IPCC factor in conventionally irrigated systems (0.98% N2O-N N applied−1), but one order of magnitude lower in rainfed systems (0.08%). Drip irrigation produces intermediate emission levels (0.66%). Differences are driven by Mediterranean agro-climatic characteristics, which include low soil organic matter (SOM) content and a distinctive rainfall and temperature pattern. Interactions between environmental and management factors and the microbial processes involved in N2O emissions are discussed in detail. Indirect emissions have not been fully accounted for, but when organic fertilizers are applied at similar N rates to synthetic fertilizers, they generally make smaller contributions to the leached NO3− pool. The most promising practices for reducing N2O through organic fertilization include: (i) minimizing water applications; (ii) minimizing bare soil; (iii) improving waste management; and (iv) tightening N cycling through N immobilization. The mitigation potential may be limited by: (i) residual effect; (ii) the long-term effects of fertilizers on SOM; (iii) lower yield-scaled performance; and (iv) total N availability from organic sources. Knowledge gaps identified in the review included: (i) insufficient sampling periods; (ii) high background emissions; (iii) the need to provide N2O EF and yield-scaled EF; (iv) the need for more research on specific cropping systems; and (v) the need for full GHG balances. In conclusion, the available information suggests a potential of organic fertilizers and water-saving practices to mitigate N2O emissions under Mediterranean climatic conditions, although further research is needed before it can be regarded as fully proven, understood and developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is an account of some aspects of the geometry of Kahler affine metrics based on considering them as smooth metric measure spaces and applying the comparison geometry of Bakry-Emery Ricci tensors. Such techniques yield a version for Kahler affine metrics of Yau s Schwarz lemma for volume forms. By a theorem of Cheng and Yau, there is a canonical Kahler affine Einstein metric on a proper convex domain, and the Schwarz lemma gives a direct proof of its uniqueness up to homothety. The potential for this metric is a function canonically associated to the cone, characterized by the property that its level sets are hyperbolic affine spheres foliating the cone. It is shown that for an n -dimensional cone, a rescaling of the canonical potential is an n -normal barrier function in the sense of interior point methods for conic programming. It is explained also how to construct from the canonical potential Monge-Ampère metrics of both Riemannian and Lorentzian signatures, and a mean curvature zero conical Lagrangian submanifold of the flat para-Kahler space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate variability and changes in the frequency of extremes events have a direct impact on crop damages and yield. In a former work of Capa et al. (2013) the crop yield variability has been studied using different reanalyses datasets with the aim of extending the time series of potential yield. The reliability of these time series have been checked using observational data. The influence of the sea surface temperature on the crop yield variability has been studied, finding a relation with El Niño phenomenon. The highest correlation between El Niño and yield was during 1960-1980. This study aims to analyse the dynamical mechanism of El Niño impacts on maize yield in Spain during 1960-1980 by comparison with atmospheric circulation patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing energy crops on marginal land has been promoted as a way of ensuring that biomass production involves an acceptable and sustainable use of land. Saline and saline-prone agricultural lands represent an opportunity for growing energy crops avoiding the displacement of food production and contributing to restoration of degraded land. Giant reed (Arundo donax L.) is a perennial grass that has been proposed as a promising energy crop for lignocellulosic biomass production while its tolerance to salinity has been proved. In this work, the identification of surplus saline lands that could be irrigated with saline waters for growing tolerant-energy crops (giant reed) in the mainland of Spain and the assessment of the agronomically attainable yield in these limiting growing conditions were undertaken. To this purpose, a GIS analysis was conducted using geodatabases related to saline areas, agro-climatic conditions, irrigation water requirements, agricultural land availability, restrictions regarding the range of electrical conductivity tolerated by the crop, competition with agro-food crops and irrigation water provisions. According to the approach developed, the irrigated and saline agricultural area available and suitable for biomass production from giant reed amounted up to 34 412 ha. The agronomically attainable yield in these limiting conditions was estimated at 12.7 – 22.2 t dm ha−1 yr−1 and the potential production of lignocellulosic biomass, 597 338 t dm yr−1. The methodology followed in this study can be applied to other target regions; it allows the identification of this type of marginal lands, where salinity-tolerant plant species could be grown for bioenergy purposes, avoiding competition with agro-food crops, and where soil restoration measurements should be undertaken.