7 resultados para winner determination problem
em Universidad Politécnica de Madrid
Resumo:
One key issue in the simulation of bare electrodynamic tethers (EDTs) is the accurate and fast computation of the collected current, an ambient dependent operation necessary to determine the Lorentz force for each time step. This paper introduces a novel semianalytical solution that allows researchers to compute the current distribution along the tether efficient and effectively under orbital-motion-limited (OML) and beyond OML conditions, i.e., if tether radius is greater than a certain ambient dependent threshold. The method reduces the original boundary value problem to a couple of nonlinear equations. If certain dimensionless variables are used, the beyond OML effect just makes the tether characteristic length L ∗ larger and it is decoupled from the current determination problem. A validation of the results and a comparison of the performance in terms of the time consumed is provided, with respect to a previous ad hoc solution and a conventional shooting method.
Resumo:
A novel methodology based on instrumented indentation is developed to determine the mechanical properties of amorphous materials which present cohesive-frictional behaviour. The approach is based on the concept of a universal hardness equation, which results from the assumption of a characteristic indentation pressure proportional to the hardness. The actual universal hardness equation is obtained from a detailed finite element analysis of the process of sharp indentation for a very wide range of material properties, and the inverse problem (i.e. how to extract the elastic modulus, the compressive yield strength and the friction angle) from instrumented indentation is solved. The applicability and limitations of the novel approach are highlighted. Finally, the model is validated against experimental data in metallic and ceramic glasses as well as polymers, covering a wide range of amorphous materials in terms of elastic modulus, yield strength and friction angle.
Resumo:
Many macroscopic properties: hardness, corrosion, catalytic activity, etc. are directly related to the surface structure, that is, to the position and chemical identity of the outermost atoms of the material. Current experimental techniques for its determination produce a “signature” from which the structure must be inferred by solving an inverse problem: a solution is proposed, its corresponding signature computed and then compared to the experiment. This is a challenging optimization problem where the search space and the number of local minima grows exponentially with the number of atoms, hence its solution cannot be achieved for arbitrarily large structures. Nowadays, it is solved by using a mixture of human knowledge and local search techniques: an expert proposes a solution that is refined using a local minimizer. If the outcome does not fit the experiment, a new solution must be proposed again. Solving a small surface can take from days to weeks of this trial and error method. Here we describe our ongoing work in its solution. We use an hybrid algorithm that mixes evolutionary techniques with trusted region methods and reuses knowledge gained during the execution to avoid repeated search of structures. Its parallelization produces good results even when not requiring the gathering of the full population, hence it can be used in loosely coupled environments such as grids. With this algorithm, the solution of test cases that previously took weeks of expert time can be automatically solved in a day or two of uniprocessor time.
Resumo:
The arrangement of atoms at the surface of a solid accounts for many of its properties: Hardness, chemical activity, corrosion, etc. are dictated by the precise surface structure. Hence, finding it, has a broad range of technical and industrial applications. The ability to solve this problem opens the possibility of designing by computer materials with properties tailored to specific applications. Since the search space grows exponentially with the number of atoms, its solution cannot be achieved for arbitrarily large structures. Presently, a trial and error procedure is used: an expert proposes an structure as a candidate solution and tries a local optimization procedure on it. The solution relaxes to the local minimum in the attractor basin corresponding to the initial point, that might be the one corresponding to the global minimum or not. This procedure is very time consuming and, for reasonably sized surfaces, can take many iterations and much effort from the expert. Here we report on a visualization environment designed to steer this process in an attempt to solve bigger structures and reduce the time needed. The idea is to use an immersive environment to interact with the computation. It has immediate feedback to assess the quality of the proposed structure in order to let the expert explore the space of candidate solutions. The visualization environment is also able to communicate with the de facto local solver used for this problem. The user is then able to send trial structures to the local minimizer and track its progress as they approach the minimum. This allows for simultaneous testing of candidate structures. The system has also proved very useful as an educational tool for the field.
Resumo:
Limit equilibrium is a common method used to analyze the stability of a slope, and minimization of the factor of safety or identification of critical slip surfaces is a classical geotechnical problem in the context of limit equilibrium methods for slope stability analyses. A mutative scale chaos optimization algorithm is employed in this study to locate the noncircular critical slip surface with Spencer’s method being employed to compute the factor of safety. Four examples from the literature—one homogeneous slope and three layered slopes—are employed to identify the efficiency and accuracy of this approach. Results indicate that the algorithm is flexible and that although it does not generally provide the minimum FS, it provides results that are close to the minimum, an improvement over other solutions proposed in the literature and with small relative errors with respect to other minimum factor of safety (FS) values reported in the literature.
Resumo:
Existe normalmente el propósito de obtener la mejor solución posible cuando se plantea un problema estructural, entendiendo como mejor la solución que cumpliendo los requisitos estructurales, de uso, etc., tiene un coste físico menor. En una primera aproximación se puede representar el coste físico por medio del peso propio de la estructura, lo que permite plantear la búsqueda de la mejor solución como la de menor peso. Desde un punto de vista práctico, la obtención de buenas soluciones—es decir, soluciones cuyo coste sea solo ligeramente mayor que el de la mejor solución— es una tarea tan importante como la obtención de óptimos absolutos, algo en general difícilmente abordable. Para disponer de una medida de la eficiencia que haga posible la comparación entre soluciones se propone la siguiente definición de rendimiento estructural: la razón entre la carga útil que hay que soportar y la carga total que hay que contabilizar (la suma de la carga útil y el peso propio). La forma estructural puede considerarse compuesta por cuatro conceptos, que junto con el material, definen una estructura: tamaño, esquema, proporción, y grueso.Galileo (1638) propuso la existencia de un tamaño insuperable para cada problema estructural— el tamaño para el que el peso propio agota una estructura para un esquema y proporción dados—. Dicho tamaño, o alcance estructural, será distinto para cada material utilizado; la única información necesaria del material para su determinación es la razón entre su resistencia y su peso especifico, una magnitud a la que denominamos alcance del material. En estructuras de tamaño muy pequeño en relación con su alcance estructural la anterior definición de rendimiento es inútil. En este caso —estructuras de “talla nula” en las que el peso propio es despreciable frente a la carga útil— se propone como medida del coste la magnitud adimensional que denominamos número de Michell, que se deriva de la “cantidad” introducida por A. G. M. Michell en su artículo seminal de 1904, desarrollado a partir de un lema de J. C. Maxwell de 1870. A finales del siglo pasado, R. Aroca combino las teorías de Galileo y de Maxwell y Michell, proponiendo una regla de diseño de fácil aplicación (regla GA), que permite la estimación del alcance y del rendimiento de una forma estructural. En el presente trabajo se estudia la eficiencia de estructuras trianguladas en problemas estructurales de flexión, teniendo en cuenta la influencia del tamaño. Por un lado, en el caso de estructuras de tamaño nulo se exploran esquemas cercanos al optimo mediante diversos métodos de minoración, con el objetivo de obtener formas cuyo coste (medido con su numero deMichell) sea muy próximo al del optimo absoluto pero obteniendo una reducción importante de su complejidad. Por otro lado, se presenta un método para determinar el alcance estructural de estructuras trianguladas (teniendo en cuenta el efecto local de las flexiones en los elementos de dichas estructuras), comparando su resultado con el obtenido al aplicar la regla GA, mostrando las condiciones en las que es de aplicación. Por último se identifican las líneas de investigación futura: la medida de la complejidad; la contabilidad del coste de las cimentaciones y la extensión de los métodos de minoración cuando se tiene en cuenta el peso propio. ABSTRACT When a structural problem is posed, the intention is usually to obtain the best solution, understanding this as the solution that fulfilling the different requirements: structural, use, etc., has the lowest physical cost. In a first approximation, the physical cost can be represented by the self-weight of the structure; this allows to consider the search of the best solution as the one with the lowest self-weight. But, from a practical point of view, obtaining good solutions—i.e. solutions with higher although comparable physical cost than the optimum— can be as important as finding the optimal ones, because this is, generally, a not affordable task. In order to have a measure of the efficiency that allows the comparison between different solutions, a definition of structural efficiency is proposed: the ratio between the useful load and the total load —i.e. the useful load plus the self-weight resulting of the structural sizing—. The structural form can be considered to be formed by four concepts, which together with its material, completely define a particular structure. These are: Size, Schema, Slenderness or Proportion, and Thickness. Galileo (1638) postulated the existence of an insurmountable size for structural problems—the size for which a structure with a given schema and a given slenderness, is only able to resist its self-weight—. Such size, or structural scope will be different for every different used material; the only needed information about the material to determine such size is the ratio between its allowable stress and its specific weight: a characteristic length that we name material structural scope. The definition of efficiency given above is not useful for structures that have a small size in comparison with the insurmountable size. In this case—structures with null size, inwhich the self-weight is negligible in comparisonwith the useful load—we use as measure of the cost the dimensionless magnitude that we call Michell’s number, an amount derived from the “quantity” introduced by A. G. M. Michell in his seminal article published in 1904, developed out of a result from J. C.Maxwell of 1870. R. Aroca joined the theories of Galileo and the theories of Maxwell and Michell, obtaining some design rules of direct application (that we denominate “GA rule”), that allow the estimation of the structural scope and the efficiency of a structural schema. In this work the efficiency of truss-like structures resolving bending problems is studied, taking into consideration the influence of the size. On the one hand, in the case of structures with null size, near-optimal layouts are explored using several minimization methods, in order to obtain forms with cost near to the absolute optimum but with a significant reduction of the complexity. On the other hand, a method for the determination of the insurmountable size for truss-like structures is shown, having into account local bending effects. The results are checked with the GA rule, showing the conditions in which it is applicable. Finally, some directions for future research are proposed: the measure of the complexity, the cost of foundations and the extension of optimization methods having into account the self-weight.
Resumo:
A Mindlin plate with periodically distributed ribs patterns is analyzed by using homogenization techniques based on asymptotic expansion methods. The stiffness matrix of the homogenized plate is found to be dependent on the geometrical characteristics of the periodical cell, i.e. its skewness, plan shape, thickness variation etc. and on the plate material elastic constants. The computation of this plate stiffness matrix is carried out by averaging over the cell domain some solutions of different periodical boundary value problems. These boundary value problems are defined in variational form by linear first order differential operators on the cell domain and the boundary conditions of the variational equation correspond to a periodic structural problem. The elements of the stiffness matrix of homogenized plate are obtained by linear combinations of the averaged solution functions of the above mentioned boundary value problems. Finally, an illustrative example of application of this homogenization technique to hollowed plates and plate structures with ribs patterns regularly arranged over its area is shown. The possibility of using in the profesional practice the present procedure to the actual analysis of floors of typical buildings is also emphasized.