10 resultados para vocal folds
em Universidad Politécnica de Madrid
Resumo:
BioMet®Tools is a set of software applications developed for the biometrical characterization of voice in different fields as voice quality evaluation in laryngology, speech therapy and rehabilitation, education of the singing voice, forensic voice analysis in court, emotional detection in voice, secure access to facilities and services, etc. Initially it was conceived as plain research code to estimate the glottal source from voice and obtain the biomechanical parameters of the vocal folds from the spectral density of the estimate. This code grew to what is now the Glottex®Engine package (G®E). Further demands from users in medical and forensic fields instantiated the development of different Graphic User Interfaces (GUI’s) to encapsulate user interaction with the G®E. This required the personalized design of different GUI’s handling the same G®E. In this way development costs and time could be saved. The development model is described in detail leading to commercial production and distribution. Study cases from its application to the field of laryngology and speech therapy are given and discussed.
Resumo:
La medicina ha evolucionado de forma que las imágenes digitales tienen un papel de gran relevancia para llevar a cabo el diagnóstico de enfermedades. Son muchos y de diversa naturaleza los problemas que pueden presentar el aparato fonador. Un paso previo para la caracterización de imágenes digitales de la laringe es la segmentación de las cuerdas vocales. Hasta el momento se han desarrollado algoritmos que permiten la segmentación de la glotis. El presente proyecto pretende avanzar un paso más en el estudio, procurando asimismo la segmentación de las cuerdas vocales. Para ello, es necesario aprovechar la información de color que ofrecen las imágenes, pues es lo que va a determinar la diferencia entre una región y otra de la imagen. En este proyecto se ha desarrollado un novedoso método de segmentación de imágenes en color estroboscópicas de la laringe basado en el crecimiento de regiones a partir de píxeles-semilla. Debido a los problemas que presentan las imágenes obtenidas por la técnica de la estroboscopia, para conseguir óptimos resultados de la segmentación es necesario someter a las imágenes a un preprocesado, que consiste en la eliminación de altos brillos y aplicación de un filtro de difusión anisotrópica. Tras el preprocesado, comienza el crecimiento de la región a partir de unas semillas que se obtienen previamente. La condición de inclusión de un píxel en la región se basa en un parámetro de tolerancia que se determina de forma adaptativa. Este parámetro comienza teniendo un valor muy bajo y va aumentando de forma recursiva hasta alcanzar una condición de parada. Esta condición se basa en el análisis de la distribución estadística de los píxeles dentro de la región que va creciendo. La última fase del proyecto consiste en la realización de las pruebas necesarias para verificar el funcionamiento del sistema diseñado, obteniéndose buenos resultados en la segmentación de la glotis y resultados esperanzadores para seguir mejorando el sistema para la segmentación de las cuerdas vocales. ABSTRACT Medicine has evolved so that digital images have a very important role to perform disease diagnosis. There are wide variety of problems that can present the vocal apparatus. A preliminary step for characterization of digital images of the larynx is the segmentation of the vocal folds. To date, some algorithms that allow the segmentation of the glottis have been developed. This project aims to go one step further in the study, also seeking the segmentation of the vocal folds. To do this, we must use the color information offered by images, since this is what will determine the difference between different regions in a picture. In this project a novel method of larynx color images segmentation based on region growing from a pixel seed is developed. Due to the problems of the images obtained by the technique of stroboscopy, to achieve optimal results of the segmentation is necessary a preprocessing of the images, which involves the removal of high brightness and applying an anisotropic diffusion filter. After this preprocessing, the growth of the region from previously obtained seeds starts. The condition for inclusion of a pixel in the region is based on a tolerance parameter, which is adaptively determined. It initially has a low value and this is recursively increased until a stop condition is reached. This condition is based on the analysis of the statistical distribution of the pixels within the grown region. The last phase of the project involves the necessary tests to verify the proper working of the designed system, obtaining very good results in the segmentation of the glottis and encouraging results to keep improving the system for the segmentation of the vocal folds.
Resumo:
BioMet®Phon is a software application developed for the characterization of voice in voice quality evaluation. Initially it was conceived as plain research code to estimate the glottal source from voice and obtain the biomechanical parameters of the vocal folds from the spectral density of the estimate. This code grew to what is now the Glottex®Engine package (G®E). Further demands from users in laryngology and speech therapy fields instantiated the development of a specific Graphic User Interface (GUI’s) to encapsulate user interaction with the G®E. This gave place to BioMet®Phon, an application which extracts the glottal source from voice and offers a complete parameterization of this signal, including distortion, cepstral, spectral, biomechanical, time domain, contact and tremor parameters. The semantic capabilities of biomechanical parameters are discussed. Study cases from its application to the field of laryngology and speech therapy are given and discussed. Validation results in voice pathology detection are also presented. Applications to laryngology, speech therapy, and monitoring neurological deterioration in the elder are proposed.
Resumo:
Las patologías de la voz se han transformado en los últimos tiempos en una problemática social con cierto calado. La contaminación de las ciudades, hábitos como el de fumar, el uso de aparatos de aire acondicionado, etcétera, contribuyen a ello. Esto alcanza más relevancia en profesionales que utilizan su voz de manera frecuente, como, por ejemplo, locutores, cantantes, profesores o teleoperadores. Por todo ello resultan de especial interés las técnicas de ayuda al diagnóstico que son capaces de extraer conclusiones clínicas a partir de una muestra de la voz grabada con un micrófono, frente a otras invasivas que implican la exploración utilizando laringoscopios, fibroscopios o videoendoscopios, técnicas en cualquier caso mucho más molestas para los pacientes al exigir la introducción parcial del instrumental citado por la garganta, en actuaciones consideradas de tipo quirúrgico. Dentro de aquellas técnicas se ha avanzado mucho en un período de tiempo relativamente corto. En lo que se refiere al diagnóstico de patologías, hemos pasado en los últimos quince años de trabajar principalmente con parámetros extraídos de la señal de voz –tanto en el dominio del tiempo como en el de la frecuencia– y con escalas elaboradas con valoraciones subjetivas realizadas por expertos a hacerlo también con parámetros procedentes de estimaciones de la fuente glótica. La importancia de utilizar la fuente glótica reside, a grandes rasgos, en que se trata de una señal vinculada directamente al estado de la estructura laríngea del locutor y también en que está generalmente menos influida por el tracto vocal que la señal de voz. Es conocido que el tracto vocal guarda más relación con el mensaje hablado, y su presencia dificulta el proceso de detección de patología vocal. Estas estimaciones de la fuente glótica han sido obtenidas a través de técnicas de filtrado inverso desarrolladas por nuestro grupo de investigación. Hemos conseguido, además, profundizar en la naturaleza de la señal glótica: somos capaces de descomponerla y relacionarla con parámetros biomecánicos de los propios pliegues vocales, obteniendo estimaciones de elementos como la masa, la pérdida de energía o la elasticidad del cuerpo y de la cubierta del pliegue, entre otros. De las componentes de la fuente glótica surgen también los denominados parámetros biométricos, relacionados con la forma de la señal, que constituyen por sí mismos una firma biométrica del individuo. También trabajaremos con parámetros temporales, relacionados con las diferentes etapas que se observan dentro de la señal glótica durante un ciclo de fonación. Por último, consideraremos parámetros clásicos de perturbación y energía de la señal. En definitiva, contamos ahora con una considerable cantidad de parámetros glóticos que conforman una base estadística multidimensional, destinada a ser capaz de discriminar personas con voces patológicas o disfónicas de aquellas que no presentan patología en la voz o con voces sanas o normofónicas. Esta tesis doctoral se ocupa de varias cuestiones: en primer lugar, es necesario analizar cuidadosamente estos nuevos parámetros, por lo que ofreceremos una completa descripción estadística de los mismos. También estudiaremos cuestiones como la distribución de los parámetros atendiendo a criterios como el de normalidad estadística de los mismos, ocupándonos especialmente de la diferencia entre las distribuciones que presentan sujetos sanos y sujetos con patología vocal. Para todo ello emplearemos diferentes técnicas estadísticas: generación de elementos y diagramas descriptivos, pruebas de normalidad y diversos contrastes de hipótesis, tanto paramétricos como no paramétricos, que considerarán la diferencia entre los grupos de personas sanas y los grupos de personas con alguna patología relacionada con la voz. Además, nos interesa encontrar relaciones estadísticas entre los parámetros, de cara a eliminar posibles redundancias presentes en el modelo, a reducir la dimensionalidad del problema y a establecer un criterio de importancia relativa en los parámetros en cuanto a su capacidad discriminante para el criterio patológico/sano. Para ello se aplicarán técnicas estadísticas como la Correlación Lineal Bivariada y el Análisis Factorial basado en Componentes Principales. Por último, utilizaremos la conocida técnica de clasificación Análisis Discriminante, aplicada a diferentes combinaciones de parámetros y de factores, para determinar cuáles de ellas son las que ofrecen tasas de acierto más prometedoras. Para llevar a cabo la experimentación se ha utilizado una base de datos equilibrada y robusta formada por doscientos sujetos, cien de ellos pertenecientes al género femenino y los restantes cien al género masculino, con una proporción también equilibrada entre los sujetos que presentan patología vocal y aquellos que no la presentan. Una de las aplicaciones informáticas diseñada para llevar a cabo la recogida de muestras también es presentada en esta tesis. Los distintos estudios estadísticos realizados nos permitirán identificar aquellos parámetros que tienen una mayor contribución a la hora de detectar la presencia de patología vocal. Alguno de los estudios, además, nos permitirá presentar una ordenación de los parámetros en base a su importancia para realizar la detección. Por otra parte, también concluiremos que en ocasiones es conveniente realizar una reducción de la dimensionalidad de los parámetros para mejorar las tasas de detección. Por fin, las propias tasas de detección constituyen quizá la conclusión más importante del trabajo. Todos los análisis presentes en el trabajo serán realizados para cada uno de los dos géneros, de acuerdo con diversos estudios previos que demuestran que los géneros masculino y femenino deben tratarse de forma independiente debido a las diferencias orgánicas observadas entre ambos. Sin embargo, en lo referente a la detección de patología vocal contemplaremos también la posibilidad de trabajar con la base de datos unificada, comprobando que las tasas de acierto son también elevadas. Abstract Voice pathologies have become recently in a social problem that has reached a certain concern. Pollution in cities, smoking habits, air conditioning, etc. contributes to it. This problem is more relevant for professionals who use their voice frequently: speakers, singers, teachers, actors, telemarketers, etc. Therefore techniques that are capable of drawing conclusions from a sample of the recorded voice are of particular interest for the diagnosis as opposed to other invasive ones, involving exploration by laryngoscopes, fiber scopes or video endoscopes, which are techniques much less comfortable for patients. Voice quality analysis has come a long way in a relatively short period of time. In regard to the diagnosis of diseases, we have gone in the last fifteen years from working primarily with parameters extracted from the voice signal (both in time and frequency domains) and with scales drawn from subjective assessments by experts to produce more accurate evaluations with estimates derived from the glottal source. The importance of using the glottal source resides broadly in that this signal is linked to the state of the speaker's laryngeal structure. Unlike the voice signal (phonated speech) the glottal source, if conveniently reconstructed using adaptive lattices, may be less influenced by the vocal tract. As it is well known the vocal tract is related to the articulation of the spoken message and its influence complicates the process of voice pathology detection, unlike when using the reconstructed glottal source, where vocal tract influence has been almost completely removed. The estimates of the glottal source have been obtained through inverse filtering techniques developed by our research group. We have also deepened into the nature of the glottal signal, dissecting it and relating it to the biomechanical parameters of the vocal folds, obtaining several estimates of items such as mass, loss or elasticity of cover and body of the vocal fold, among others. From the components of the glottal source also arise the so-called biometric parameters, related to the shape of the signal, which are themselves a biometric signature of the individual. We will also work with temporal parameters related to the different stages that are observed in the glottal signal during a cycle of phonation. Finally, we will take into consideration classical perturbation and energy parameters. In short, we have now a considerable amount of glottal parameters in a multidimensional statistical basis, designed to be able to discriminate people with pathologic or dysphonic voices from those who do not show pathology. This thesis addresses several issues: first, a careful analysis of these new parameters is required, so we will offer a complete statistical description of them. We will also discuss issues such as distribution of the parameters, considering criteria such as their statistical normality. We will take special care in the analysis of the difference between distributions from healthy subjects and the distributions from pathological subjects. To reach these goals we will use different statistical techniques such as: generation of descriptive items and diagramas, tests for normality and hypothesis testing, both parametric and nonparametric. These latter techniques consider the difference between the groups of healthy subjects and groups of people with an illness related to voice. In addition, we are interested in finding statistical relationships between parameters. There are various reasons behind that: eliminate possible redundancies in the model, reduce the dimensionality of the problem and establish a criterion of relative importance in the parameters. The latter reason will be done in terms of discriminatory power for the criterion pathological/healthy. To this end, statistical techniques such as Bivariate Linear Correlation and Factor Analysis based on Principal Components will be applied. Finally, we will use the well-known technique of Discriminant Analysis classification applied to different combinations of parameters and factors to determine which of these combinations offers more promising success rates. To perform the experiments we have used a balanced and robust database, consisting of two hundred speakers, one hundred of them males and one hundred females. We have also used a well-balanced proportion where subjects with vocal pathology as well as subjects who don´t have a vocal pathology are equally represented. A computer application designed to carry out the collection of samples is also presented in this thesis. The different statistical analyses performed will allow us to determine which parameters contribute in a more decisive way in the detection of vocal pathology. Therefore, some of the analyses will even allow us to present a ranking of the parameters based on their importance for the detection of vocal pathology. On the other hand, we will also conclude that it is sometimes desirable to perform a dimensionality reduction in order to improve the detection rates. Finally, detection rates themselves are perhaps the most important conclusion of the work. All the analyses presented in this work have been performed for each of the two genders in agreement with previous studies showing that male and female genders should be treated independently, due to the observed functional differences between them. However, with regard to the detection of vocal pathology we will consider the possibility of working with the unified database, ensuring that the success rates obtained are also high.
Resumo:
Automatic systems based on speech signal analysis for the early dete ction of obstructive sleep apnea (OSA) have achieved fairly high performance rates in recent years. However, a satisfactory explanation of these results has not been available. This presentation aims at explaining via an examination of the long-term spectra of OSA patients and normal control speakers these systems’ ability to discover OSA speakers on the base of all-purpose cepstral coefficients. An in terpretation of the long- term spectra in terms of the underlying tract settings suggests that the speech of OSA patients is characterized by a pharyngeal narrowing that may be captured by acoustic cues of the spectral contour of windowed speech frames. A novel interpretation of long-term spectra in terms of the first principal component of the temporal sequence of short-term amplitude-spectra is also discussed.
Resumo:
Neurological Diseases (ND) are affecting larger segments of aging population every year. Treatment is dependent on expensive accurate and frequent monitoring. It is well known that ND leave correlates in speech and phonation. The present work shows a method to detect alterations in vocal fold tension during phonation. These may appear either as hypertension or as cyclical tremor. Estimations of tremor may be produced by auto-regressive modeling of the vocal fold tension series in sustained phonation. The correlates obtained are a set of cyclicality coefficients, the frequency and the root mean square amplitude of the tremor. Statistical distributions of these correlates obtained from a set of male and female subjects are presented. Results from five study cases of female voice are also given.
Resumo:
A case study of vocal fold paralysis treatment is described with the help of the voice quality analysis application BioMet®Phon. The case corresponds to a description of a 40 - year old female patient who was diagnosed of vocal fold paralysis following a cardio - pulmonar intervention which required intubation for 8 days and posterior tracheotomy for 15 days. The patient presented breathy and asthenic phon ation, and dysphagia. Six main examinations were conducted during a full year period that the treatment lasted consisting in periodic reviews including video - endostroboscopy, voice analysis and breathing function monitoring. The phoniatrician treatment inc luded 20 sessions of vocal rehabilitation, followed by an intracordal infiltration with Radiesse 8 months after the rehabilitation treatment started followed by 6 sessions of rehabilitation more. The videondoscopy and the voicing quality analysis refer a s ubstantial improvement in the vocal function with recovery in all the measures estimated (jitter, shimmer, mucosal wave contents, glottal closure, harmonic contents and biomechanical function analysis). The paper refers the procedure followed and the results obtained by comparing the longitudinal progression of the treatment, illustrating the utility of voice quality analysis tools in speech therapy.
Resumo:
Gender detection is a very important objective to improve efficiency in tasks as speech or speaker recognition, among others. Traditionally gender detection has been focused on fundamental frequency (f0) and cepstral features derived from voiced segments of speech. The methodology presented here consists in obtaining uncorrelated glottal and vocal tract components which are parameterized as mel-frequency coefficients. K-fold and cross-validation using QDA and GMM classifiers showed that better detection rates are reached when glottal source and vocal tract parameters are used in a gender-balanced database of running speech from 340 speakers.
Resumo:
Teaching the adequate use of the singing voice conveys a lot of knowledge in musical performance as well as in objective estimation techniques involving the use of air, muscles, room and body acoustics, and the tuning of a fine instrument as the human voice. Although subjective evaluation and training is a very delicate task to be carried out only by expert singers, biomedical engineering may help contributing with well - funded methodologies developed for the study of voice pathology. The present study is a preliminary study of exploratory character describing the performance of a student singer in a regular classroom under the point of view of vocal fold biomechanics. Estimate s of biomechanical parameters obtained from singing voice are given and their use i n the classroom is discussed.
Resumo:
La realización de este proyecto está basado en el estudio realizado por Jean Schoentgen en el cual el autor caracterizó el micro temblor vocal por medio del índice y la frecuencia de modulación. En este proyecto se utilizará la herramienta Matlab para el cálculo de estos parámetros y al finalizar se analizarán los datos obtenidos. El proyecto se ha dividido en tres grandes partes. En la primera de ellas se ha explicado brevemente los conceptos básicos de la voz y conceptos importantes tales como el temblor fisiológico, el patológico y el Jitter vocal entre otros, también se han detallado conceptos matemáticos utilizados en el desarrollo del código. Esto se realizó con el fin que el lector tenga claros algunos conceptos importantes antes del desarrollo del código y así pueda entender con más facilidad el estudio realizado en este proyecto, en esta parte no se ha realizado una explicación muy extensa de cada concepto, entendiendo que el lector posee unos conocimientos básicos de ingeniería, por otra parte existen innumerables libros que explican de una manera más precisa cada uno de estos conceptos. En la segunda parte se llevó a cabo el desarrollo del código. Como se mencionó anteriormente se ha utilizado la herramienta Matlab que es muy utilizada en la mayoría de las asignaturas de la carrera obteniendo así un buen dominio de esta, además posee unos toolbox muy útiles que facilitan los cálculos matemáticos. En esta parte se ilustra paso a paso cada etapa de elaboración del código y algunas graficas de la señal de voz a medida que pasa por cada etapa del código. En la última parte se obtienen los datos de todos los cálculos de los registros de voz y se analiza cada uno de ellos a la vez que se comparan con los del estudio de Jean Schoentgen y se analizan las posibles diferencias. ABSTRACT. The Project is based on the search made by Jean Schoentgen, whose research the micro tremor vocal can be established by frequency modulation and modulation index. This project has been carried out in Matlab to calculate the aforementioned parameters and finally, the results were contrasted with the results from Jean Shoetngen’s research. This project consists of three parts: The first of all, to be able to understand this project to future readers .It was explained different basic concepts about the voice such as physiologic tremor, pathological tremor and Jitter. Furthermore, mathematical concepts were explained in detail, due to these were used in the software development. Then, it was focused on software development such as the elaboration of code and different voice signals that were processed. This part was made with Matlab, which is mathematical software with high-level language for numerical computation, visualization, collaborate across disciplines including signal and image processing and application development. At finally, the acquired calculations were contrasted with the results from Jean Schoentgen’s research.