9 resultados para vision control
em Universidad Politécnica de Madrid
Resumo:
El principal objetivo de este trabajo es proporcionar una solución en tiempo real basada en visión estéreo o monocular precisa y robusta para que un vehículo aéreo no tripulado (UAV) sea autónomo en varios tipos de aplicaciones UAV, especialmente en entornos abarrotados sin señal GPS. Este trabajo principalmente consiste en tres temas de investigación de UAV basados en técnicas de visión por computador: (I) visual tracking, proporciona soluciones efectivas para localizar visualmente objetos de interés estáticos o en movimiento durante el tiempo que dura el vuelo del UAV mediante una aproximación adaptativa online y una estrategia de múltiple resolución, de este modo superamos los problemas generados por las diferentes situaciones desafiantes, tales como cambios significativos de aspecto, iluminación del entorno variante, fondo del tracking embarullado, oclusión parcial o total de objetos, variaciones rápidas de posición y vibraciones mecánicas a bordo. La solución ha sido utilizada en aterrizajes autónomos, inspección de plataformas mar adentro o tracking de aviones en pleno vuelo para su detección y evasión; (II) odometría visual: proporciona una solución eficiente al UAV para estimar la posición con 6 grados de libertad (6D) usando únicamente la entrada de una cámara estéreo a bordo del UAV. Un método Semi-Global Blocking Matching (SGBM) eficiente basado en una estrategia grueso-a-fino ha sido implementada para una rápida y profunda estimación del plano. Además, la solución toma provecho eficazmente de la información 2D y 3D para estimar la posición 6D, resolviendo de esta manera la limitación de un punto de referencia fijo en la cámara estéreo. Una robusta aproximación volumétrica de mapping basada en el framework Octomap ha sido utilizada para reconstruir entornos cerrados y al aire libre bastante abarrotados en 3D con memoria y errores correlacionados espacialmente o temporalmente; (III) visual control, ofrece soluciones de control prácticas para la navegación de un UAV usando Fuzzy Logic Controller (FLC) con la estimación visual. Y el framework de Cross-Entropy Optimization (CEO) ha sido usado para optimizar el factor de escala y la función de pertenencia en FLC. Todas las soluciones basadas en visión en este trabajo han sido probadas en test reales. Y los conjuntos de datos de imágenes reales grabados en estos test o disponibles para la comunidad pública han sido utilizados para evaluar el rendimiento de estas soluciones basadas en visión con ground truth. Además, las soluciones de visión presentadas han sido comparadas con algoritmos de visión del estado del arte. Los test reales y los resultados de evaluación muestran que las soluciones basadas en visión proporcionadas han obtenido rendimientos en tiempo real precisos y robustos, o han alcanzado un mejor rendimiento que aquellos algoritmos del estado del arte. La estimación basada en visión ha ganado un rol muy importante en controlar un UAV típico para alcanzar autonomía en aplicaciones UAV. ABSTRACT The main objective of this dissertation is providing real-time accurate robust monocular or stereo vision-based solution for Unmanned Aerial Vehicle (UAV) to achieve the autonomy in various types of UAV applications, especially in GPS-denied dynamic cluttered environments. This dissertation mainly consists of three UAV research topics based on computer vision technique: (I) visual tracking, it supplys effective solutions to visually locate interesting static or moving object over time during UAV flight with on-line adaptivity approach and multiple-resolution strategy, thereby overcoming the problems generated by the different challenging situations, such as significant appearance change, variant surrounding illumination, cluttered tracking background, partial or full object occlusion, rapid pose variation and onboard mechanical vibration. The solutions have been utilized in autonomous landing, offshore floating platform inspection and midair aircraft tracking for sense-and-avoid; (II) visual odometry: it provides the efficient solution for UAV to estimate the 6 Degree-of-freedom (6D) pose using only the input of stereo camera onboard UAV. An efficient Semi-Global Blocking Matching (SGBM) method based on a coarse-to-fine strategy has been implemented for fast depth map estimation. In addition, the solution effectively takes advantage of both 2D and 3D information to estimate the 6D pose, thereby solving the limitation of a fixed small baseline in the stereo camera. A robust volumetric occupancy mapping approach based on the Octomap framework has been utilized to reconstruct indoor and outdoor large-scale cluttered environments in 3D with less temporally or spatially correlated measurement errors and memory; (III) visual control, it offers practical control solutions to navigate UAV using Fuzzy Logic Controller (FLC) with the visual estimation. And the Cross-Entropy Optimization (CEO) framework has been used to optimize the scaling factor and the membership function in FLC. All the vision-based solutions in this dissertation have been tested in real tests. And the real image datasets recorded from these tests or available from public community have been utilized to evaluate the performance of these vision-based solutions with ground truth. Additionally, the presented vision solutions have compared with the state-of-art visual algorithms. Real tests and evaluation results show that the provided vision-based solutions have obtained real-time accurate robust performances, or gained better performance than those state-of-art visual algorithms. The vision-based estimation has played a critically important role for controlling a typical UAV to achieve autonomy in the UAV application.
Resumo:
The emerging use of real-time 3D-based multimedia applications imposes strict quality of service (QoS) requirements on both access and core networks. These requirements and their impact to provide end-to-end 3D videoconferencing services have been studied within the Spanish-funded VISION project, where different scenarios were implemented showing an agile stereoscopic video call that might be offered to the general public in the near future. In view of the requirements, we designed an integrated access and core converged network architecture which provides the requested QoS to end-to-end IP sessions. Novel functional blocks are proposed to control core optical networks, the functionality of the standard ones is redefined, and the signaling improved to better meet the requirements of future multimedia services. An experimental test-bed to assess the feasibility of the solution was also deployed. In such test-bed, set-up and release of end-to-end sessions meeting specific QoS requirements are shown and the impact of QoS degradation in terms of the user perceived quality degradation is quantified. In addition, scalability results show that the proposed signaling architecture is able to cope with large number of requests introducing almost negligible delay.
Resumo:
This article presents a cooperative manoeuvre among three dual mode cars – vehicles equipped with sensors and actuators, and that can be driven either manually or autonomously. One vehicle is driven autonomously and the other two are driven manually. The main objective is to test two decision algorithms for priority conflict resolution at intersections so that a vehicle autonomously driven can take their own decision about crossing an intersection mingling with manually driven cars without the need for infrastructure modifications. To do this, the system needs the position, speeds, and turning intentions of the rest of the cars involved in the manoeuvre. This information is acquired via communications, but other methods are also viable, such as artificial vision. The idea of the experiments was to adjust the speed of the manually driven vehicles to force a situation where all three vehicles arrive at an intersection at the same time.
Resumo:
This article presents the proposal of the Computer Vision Group to the first phase of the international competition “Concurso de Ingeniería de Control 2012, Control Aut ́onomo del seguimiento de trayectorias de un vehículo cuatrirrotor”. This phase consists mainly of two parts: identifying a model and designing a trajectory controller for the AR Drone quadrotor. For the identification task, two models are proposed: a simplified model that captures only the main dynamics of the quadrotor, and a second model based on the physical laws underlying the AR Drone behavior. The trajectory controller design is based on the simplified model, whereas the physical model is used to tune the controller to attain a certain level of robust stability to model uncertainties. The controller design is simplified by the hypothesis that accurate positions sensors will be available to implement a feedback controller.
Resumo:
El principal objetivo de esta tesis es dotar a los vehículos aéreos no tripulados (UAVs, por sus siglas en inglés) de una fuente de información adicional basada en visión. Esta fuente de información proviene de cámaras ubicadas a bordo de los vehículos o en el suelo. Con ella se busca que los UAVs realicen tareas de aterrizaje o inspección guiados por visión, especialmente en aquellas situaciones en las que no haya disponibilidad de estimar la posición del vehículo con base en GPS, cuando las estimaciones de GPS no tengan la suficiente precisión requerida por las tareas a realizar, o cuando restricciones de carga de pago impidan añadir sensores a bordo de los vehículos. Esta tesis trata con tres de las principales áreas de la visión por computador: seguimiento visual y estimación visual de la pose (posición y orientación), que a su vez constituyen la base de la tercera, denominada control servo visual, que en nuestra aplicación se enfoca en el empleo de información visual para controlar los UAVs. Al respecto, esta tesis se ocupa de presentar propuestas novedosas que permitan solucionar problemas relativos al seguimiento de objetos mediante cámaras ubicadas a bordo de los UAVs, se ocupa de la estimación de la pose de los UAVs basada en información visual obtenida por cámaras ubicadas en el suelo o a bordo, y también se ocupa de la aplicación de las técnicas propuestas para solucionar diferentes problemas, como aquellos concernientes al seguimiento visual para tareas de reabastecimiento autónomo en vuelo o al aterrizaje basado en visión, entre otros. Las diversas técnicas de visión por computador presentadas en esta tesis se proponen con el fin de solucionar dificultades que suelen presentarse cuando se realizan tareas basadas en visión con UAVs, como las relativas a la obtención, en tiempo real, de estimaciones robustas, o como problemas generados por vibraciones. Los algoritmos propuestos en esta tesis han sido probados con información de imágenes reales obtenidas realizando pruebas on-line y off-line. Diversos mecanismos de evaluación han sido empleados con el propósito de analizar el desempeño de los algoritmos propuestos, entre los que se incluyen datos simulados, imágenes de vuelos reales, estimaciones precisas de posición empleando el sistema VICON y comparaciones con algoritmos del estado del arte. Los resultados obtenidos indican que los algoritmos de visión por computador propuestos tienen un desempeño que es comparable e incluso mejor al de algoritmos que se encuentran en el estado del arte. Los algoritmos propuestos permiten la obtención de estimaciones robustas en tiempo real, lo cual permite su uso en tareas de control visual. El desempeño de estos algoritmos es apropiado para las exigencias de las distintas aplicaciones examinadas: reabastecimiento autónomo en vuelo, aterrizaje y estimación del estado del UAV. Abstract The main objective of this thesis is to provide Unmanned Aerial Vehicles (UAVs) with an additional vision-based source of information extracted by cameras located either on-board or on the ground, in order to allow UAVs to develop visually guided tasks, such as landing or inspection, especially in situations where GPS information is not available, where GPS-based position estimation is not accurate enough for the task to develop, or where payload restrictions do not allow the incorporation of additional sensors on-board. This thesis covers three of the main computer vision areas: visual tracking and visual pose estimation, which are the bases the third one called visual servoing, which, in this work, focuses on using visual information to control UAVs. In this sense, the thesis focuses on presenting novel solutions for solving the tracking problem of objects when using cameras on-board UAVs, on estimating the pose of the UAVs based on the visual information collected by cameras located either on the ground or on-board, and also focuses on applying these proposed techniques for solving different problems, such as visual tracking for aerial refuelling or vision-based landing, among others. The different computer vision techniques presented in this thesis are proposed to solve some of the frequently problems found when addressing vision-based tasks in UAVs, such as obtaining robust vision-based estimations at real-time frame rates, and problems caused by vibrations, or 3D motion. All the proposed algorithms have been tested with real-image data in on-line and off-line tests. Different evaluation mechanisms have been used to analyze the performance of the proposed algorithms, such as simulated data, images from real-flight tests, publicly available datasets, manually generated ground truth data, accurate position estimations using a VICON system and a robotic cell, and comparison with state of the art algorithms. Results show that the proposed computer vision algorithms obtain performances that are comparable to, or even better than, state of the art algorithms, obtaining robust estimations at real-time frame rates. This proves that the proposed techniques are fast enough for vision-based control tasks. Therefore, the performance of the proposed vision algorithms has shown to be of a standard appropriate to the different explored applications: aerial refuelling and landing, and state estimation. It is noteworthy that they have low computational overheads for vision systems.
Resumo:
In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.
Resumo:
This paper presents a vision based autonomous landing control approach for unmanned aerial vehicles (UAV). The 3D position of an unmanned helicopter is estimated based on the homographies estimated of a known landmark. The translation and altitude estimation of the helicopter against the helipad position are the only information that is used to control the longitudinal, lateral and descend speeds of the vehicle. The control system approach consists in three Fuzzy controllers to manage the speeds of each 3D axis of the aircraft s coordinate system. The 3D position estimation was proven rst, comparing it with the GPS + IMU data with very good results. The robust of the vision algorithm against occlusions was also tested. The excellent behavior of the Fuzzy control approach using the 3D position estimation based in homographies was proved in an outdoors test using a real unmanned helicopter.
Resumo:
La telepesencia combina diferentes modalidades sensoriales, incluyendo, entre otras, la visual y la del tacto, para producir una sensación de presencia remota en el operador. Un elemento clave en la implementación de sistemas de telepresencia para permitir una telemanipulación del entorno remoto es el retorno de fuerza. Durante una telemanipulación, la energía mecánica es transferida entre el operador humano y el entorno remoto. En general, la energía es una propiedad de los objetos físicos, fundamental en su mutual interacción. En esta interacción, la energía se puede transmitir entre los objetos, puede cambiar de forma pero no puede crearse ni destruirse. En esta tesis, se aplica este principio fundamental para derivar un nuevo método de control bilateral que permite el diseño de sistemas de teleoperación estables para cualquier arquitectura concebible. El razonamiento parte del hecho de que la energía mecánica insertada por el operador humano en el sistema debe transferirse hacia el entorno remoto y viceversa. Tal como se verá, el uso de la energía como variable de control permite un tratamiento más general del sistema que el control convencional basado en variables específicas del sistema. Mediante el concepto de Red de Potencia de Retardo Temporal (RPRT), el problema de definir los flujos de energía en un sistema de teleoperación es solucionado con independencia de la arquitectura de comunicación. Como se verá, los retardos temporales son la principal causa de generación de energía virtual. Este hecho se observa con retardos a partir de 1 milisegundo. Esta energía virtual es añadida al sistema de forma intrínseca y representa la causa principal de inestabilidad. Se demuestra que las RPRTs son transportadoras de la energía deseada intercambiada entre maestro y esclavo pero a la vez generadoras de energía virtual debido al retardo temporal. Una vez estas redes son identificadas, el método de Control de Pasividad en el Dominio Temporal para RPRTs se propone como mecanismo de control para asegurar la pasividad del sistema, y as__ la estabilidad. El método se basa en el simple hecho de que esta energía virtual debido al retardo debe transformarse en disipación. As__ el sistema se aproxima al sistema deseado, donde solo la energía insertada desde un extremo es transferida hacia el otro. El sistema resultante presenta dos cualidades: por un lado la estabilidad del sistema queda garantizada con independencia de la arquitectura del sistema y del canal de comunicación; por el otro, el rendimiento es maximizado en términos de fidelidad de transmisión energética. Los métodos propuestos se sustentan con sistemas experimentales con diferentes arquitecturas de control y retardos entre 2 y 900 ms. La tesis concluye con un experimento que incluye una comunicación espacial basada en el satélite geoestacionario ASTRA. ABSTRACT Telepresence combines different sensorial modalities, including vision and touch, to produce a feeling of being present in a remote location. The key element to successfully implement a telepresence system and thus to allow telemanipulation of a remote environment is force feedback. In a telemanipulation, mechanical energy must convey from the human operator to the manipulated object found in the remote environment. In general, energy is a property of all physical objects, fundamental to their mutual interactions in which the energy can be transferred among the objects and can change form but cannot be created or destroyed. In this thesis, we exploit this fundamental principle to derive a novel bilateral control mechanism that allows designing stable teleoperation systems with any conceivable communication architecture. The rationale starts from the fact that the mechanical energy injected by a human operator into the system must be conveyed to the remote environment and Vice Versa. As will be seen, setting energy as the control variable allows a more general treatment of the controlled system in contrast to the more conventional control of specific systems variables. Through the Time Delay Power Network (TDPN) concept, the issue of defining the energy flows involved in a teleoperation system is solved with independence of the communication architecture. In particular, communication time delays are found to be a source of virtual energy. This fact is observed with delays starting from 1 millisecond. Since this energy is added, the resulting teleoperation system can be non-passive and thus become unstable. The Time Delay Power Networks are found to be carriers of the desired exchanged energy but also generators of virtual energy due to the time delay. Once these networks are identified, the Time Domain Passivity Control approach for TDPNs is proposed as a control mechanism to ensure system passivity and therefore, system stability. The proposed method is based on the simple fact that this intrinsically added energy due to the communication must be transformed into dissipation. Then the system becomes closer to the ambitioned one, where only the energy injected from one end of the system is conveyed to the other one. The resulting system presents two benefits: On one hand, system stability is guaranteed through passivity independently from the chosen control architecture and communication channel; on the other, performance is maximized in terms of energy transfer faithfulness. The proposed methods are sustained with a set of experimental implementations using different control architectures and communication delays ranging from 2 to 900 milliseconds. An experiment that includes a communication Space link based on the geostationary satellite ASTRA concludes this thesis.
Resumo:
En este proyecto, se pretende obtener la solución óptima para el control del hogar digital accesible. Para ello, comenzaremos explicando el funcionamiento básico de un sistema dómotico, enumeraremos los diversos dispositivos que se utilizan en este tipo de automatizaciones, y comentaremos las diferentes posibilidades con respecto a la arquitectura del sistema. Para elegir la opción más adecuada, se realizará un pequeño estudio a acerca de cada una de las tecnologías existentes, protocolos cerrados, y abiertos, así como tecnologías inalámbricas o de bus. Se realizará un estudio con mayor profundidad del estándar KNX, ya que será una de las tecnologías elegidas finalmente para la realización del proyecto. Una vez elegido el estándar, hemos de centrarnos en las necesidades del recinto, para así poder empezar a definir cada uno de los elementos que incluiremos en nuestra instalación, sensores, actuadores, elementos de intercomunicación, procesadores y dispositivos de control. El siguiente paso consistiría en la programación de la vivienda, para ello hemos de tener previamente estructurados y definidos tanto el número de circuitos eléctricos, como la función que estos desempeñan dentro del recinto inteligente, es decir, accionamiento, regulación etc, para así poder asignar cada circuito a la salida correspondiente de su propio actuador. La vivienda se programará a través de ETS, software asociado a la marca KNX. Mediante este protocolo controlaremos, iluminación, motores, climatización y seguridad. Debido a los recursos limitados que ofrece KNX con respecto a la programación lógica de eventos y secuencias de acciones, y la necesidad de visualizar la interfaz gráfica de la vivienda se ha integrado un procesador. Considerando el deseo de integrar el control de un televisor en la vivienda, futuras ampliaciones y otros aspectos, el procesador integrado será de Crestron Electronics, marca correspondiente a un protocolo cerrado de automatización de sistemas, que cuenta con grandes avances en el control multimedia. Por tanto, la segunda parte de la programación se realizará mediante otros dos softwares diferentes, pertenecientes a la marca, Simple Windows se encargará de la programación lógica del sistema, mientras que Vision Tools creará la visualización. Por último, obtendremos las conclusiones necesarias, adjuntaremos un diagrama de conexionado, presupuesto de la instalación, planos y un pequeño manual de usuario. ABSTRACT. The aim of this project is to optimize the environment control of the Accesible Digital Home unit located in ETSIST - UPM, through different essays, valuing the domestic possibilities and the current interfaces. The tests will be carried out comparing different protocols and the possibilities of optimization that they offer to a Digital Home. Aspects such as: ease the communications with other systems, reliability, costs, long term maintenance of the installation, etc. After conducting trials protocol or most appropriate technology for the automation of the enclosure shall be elected. One Chosen the standard, we have to focus on the needs of the enclosure, so, to begin defining each of the elements included in our installation, sensors, actuators, elements intercom, processors and control devices. The next step is the programing of housing, for that we have previously structured and defined both the number of electrical circuits, as the role they play in the intelligent enclosure, that is, switching, dimming etc., in order to assign each circuit to the corresponding output of its own actuator. The house will be scheduled through ETS, software associated with the brand KNX. Through this protocol we will control, lighting, motors, air conditioning and security. Due to the limited resources available in KNX with respect logic programming of events and sequences of actions, and the need to display the graphical interface housing has been integrated processor belonging to the closed protocol or Crestron electronics brand. Finally, when we get the necessary conclusions, enclose a diagram of wiring, installation budget, planes and a small manual.