3 resultados para vertical behaviour
em Universidad Politécnica de Madrid
Resumo:
Escalator and moving walkway are multibody systems with a design of more than a century. Developed methodology allows studying and improving any subsystem of both systems. In addition, new concepts can be developed and tested without the necessity and cost of a real construction. CITEF (Railway Technologies Research Centre) has been modelling escalators for more than four years. Several complex and innovative models has been developed to characterize static, kinematic and dynamic escalator behaviour. The high number of mechanical elements that are part of escalators complicate modelling task. In this way, methodologies and tools have been developed in order to automate these task and saving computational and time costs. Developed methodologies have been validated with the results of comparing real measurements and simulated outputs from a dynamic model.
Resumo:
The 6 cylinder servo-hydraulic loading system of CEDEX's track box (250 kN, 50 Hz) has been recently implemented with a new piezoelectric loading system (±20 kN, 300 Hz) allowing the incorporation of low amplitude high frequency dynamic load time histories to the high amplitude low frequency quasi-static load time histories used so far in the CEDEX's track box to assess the inelastic long term behavior of ballast under mixed traffic in conventional and high- speed lines. This presentation will discuss the results obtained in the first long-duration test performed at CEDEX's track box using simultaneously both loading systems, to simulate the pass-by of 6000 freight vehicles (1M of 225 kN axle loads) travelling at a speed of 120 km/h over a line with vertical irregularities corresponding to a medium quality lin3e level. The superstructure of the track tested at full scale consisted of E 60 rails, stiff rail pads (mayor que 450 kN/mm), B90.2 sleepers with USP 0.10 N/mm and a 0.35 m thick ballast layer of ADIF first class. A shear wave velocity of 250 m/s can be assumed for the different layers of the track sub-base. The ballast long-term settlements will be compared with those obtained in a previous long-duration quasi- static test performed in the same track, for the RIVAS [EU co-funded] project, in which no dynamic loads where considered. Also, the results provided by a high diameter cyclic triaxial cell with ballast tested in full size will be commented. Finally, the progress made at CEDEX's Geotechnical Laboratory to reproduce numerically the long term behavior of ballast will be discussed.
Resumo:
A sensitivity analysis has been performed to assess the influence of the inertial properties of railway vehicles on their dynamic behaviour. To do this, 216 dynamic simulations were performed modifying, one at a time, the masses, moments of inertia and heights of the centre of gravity of the carbody, the bogie and the wheelset. Three values were assigned to each parameter, corresponding to the percentiles 10, 50 and 90 of a data set stored in a database of railway vehicles. After processing the results of these simulations, the analyzed parameters were sorted by increasing influence. It was also found which of these parameters could be estimated with a lesser degree of accuracy for future simulations without appreciably affecting the simulation results. In general terms, it was concluded that the most sensitive inertial properties are the mass and the vertical moment of inertia, and the least sensitive ones the longitudinal and lateral moments of inertia.