5 resultados para verbal fluency
em Universidad Politécnica de Madrid
Resumo:
Inter-individual differences in cognitive performance are based on an efficient use of task-related brain resources. However, little is known yet on how these differences might be reflected on resting-state brain networks. Here we used Magnetoencephalography resting-state recordings to assess the relationship between a behavioral measurement of verbal working memory and functional connectivity as measured through Mutual Information. We studied theta (4?8 Hz), low alpha (8?10 Hz), high alpha (10?13 Hz), low beta (13?18 Hz) and high beta (18?30 Hz) frequency bands. A higher verbal working memory capacity was associated with a lower mutual information in the low alpha band, prominently among right-anterior and left-lateral sensors. The results suggest that an efficient brain organization in the domain of verbal working memory might be related to a lower resting-state functional connectivity across large-scale brain networks possibly involving right prefrontal and left perisylvian areas.
Resumo:
In this paper we investigate whether conventional text categorization methods may suffice to infer different verbal intelligence levels. This research goal relies on the hypothesis that the vocabulary that speakers make use of reflects their verbal intelligence levels. Automatic verbal intelligence estimation of users in a spoken language dialog system may be useful when defining an optimal dialog strategy by improving its adaptation capabilities. The work is based on a corpus containing descriptions (i.e. monologs) of a short film by test persons yielding different educational backgrounds and the verbal intelligence scores of the speakers. First, a one-way analysis of variance was performed to compare the monologs with the film transcription and to demonstrate that there are differences in the vocabulary used by the test persons yielding different verbal intelligence levels. Then, for the classification task, the monologs were represented as feature vectors using the classical TF–IDF weighting scheme. The Naive Bayes, k-nearest neighbors and Rocchio classifiers were tested. In this paper we describe and compare these classification approaches, define the optimal classification parameters and discuss the classification results obtained.
Resumo:
This work investigates to what degree speakers with different verbal intelligence may adapt to each other. The work is based on a corpus consisting of 100 descriptions of a short film (monologues), 56 discussions about the same topic (dialogues), and verbal intelligence scores of the test participants. Adaptation between two dialogue partners was measured using cross-referencing, proportion of "I", "You" and "We" words, between-subject correlation and similarity of texts. It was shown that lower verbal intelligence speakers repeated more nouns and adjectives from the other and used the same linguistic categories more often than higher verbal intelligence speakers. In dialogues between strangers, participants with higher verbal intelligence showed a greater level of adaptation.
Resumo:
In this paper we investigated differences in language use of speakers yielding different verbal intelligence when they describe the same event. The work is based on a corpus containing descriptions of a short film and verbal intelligence scores of the speakers. For analyzing the monologues and the film transcript, the number of reused words, lemmas, n-grams, cosine similarity and other features were calculated and compared to each other for different verbal intelligence groups. The results showed that the similarity of monologues of higher verbal intelligence speakers was greater than of lower and average verbal intelligence participants. A possible explanation of this phenomenon is that candidates yielding higher verbal intelligence have a better short-term memory. In this paper we also checked a hypothesis that differences in vocabulary of speakers yielding different verbal intelligence are sufficient enough for good classification results. For proving this hypothesis, the Nearest Neighbor classifier was trained using TF-IDF vocabulary measures. The maximum achieved accuracy was 92.86%.
Resumo:
In this work we investigated whether there is a relationship between dominant behaviour of dialogue participants and their verbal intelligence. The analysis is based on a corpus containing 56 dialogues and verbal intelligence scores of the test persons. All the dialogues were divided into three groups: H-H is a group of dialogues between higher verbal intelligence participants, L-L is a group of dialogues between lower verbal intelligence participant and L-H is a group of all the other dialogues. The dominance scores of the dialogue partners from each group were analysed. The analysis showed that differences between dominance scores and verbal intelligence coefficients for L-L were positively correlated. Verbal intelligence scores of the test persons were compared to other features that may reflect dominant behaviour. The analysis showed that number of interruptions, long utterances, times grabbed the floor, influence diffusion model, number of agreements and several acoustic features may be related to verbal intelligence. These features were used for the automatic classification of the dialogue partners into two groups (lower and higher verbal intelligence participants); the achieved accuracy was 89.36%.