11 resultados para variance component models
em Universidad Politécnica de Madrid
Resumo:
Este proyecto consiste en el desarrollo de un sistema completo de generación procedimental de misiones para videojuegos. Buscamos crear, mediante un encadenamiento de algoritmos y un modelado del juego y sus componentes, secuencias de acciones y eventos de juego encadenados entre sí de forma lógica. La realización de estas secuencias de acciones lleva progresivamente hacia un objetivo final. Estas secuencias se conocen en el mundo de los juegos como misiones. Las dos fases principales del proceso son la generación de una misión a partir de un estado de juego inicial y la búsqueda de una misión óptima utilizando ciertos criterios que pueden estar ligados a las propiedades del jugador, dando lugar a misiones adaptativas. El proyecto contempla el desarrollo íntegro del sistema, lo que incluye tanto el sistema de generación y búsqueda como un videojuego donde integrar el resto del sistema para completarlo. El resultado final es plenamente funcional y jugable. La base teórica del proyecto proviene de la simbiosis de dos artes: la generación procedimental de contenido y la narración interactiva. This project involves the development of a complete procedural game quest generation system. We seek to build, by linking a series of algorithms, game and game component models, sequences of logically chained game actions and events. The ordered accomplishment of these sequences lead progressively to the fulfillment of a final objective. These sequences are known as quests in the videogame world. The two main parts of the process are quest generation from an initial game state and optimal quest search. This last is achieved by using certain criteria that can defined by the player properties, thus giving birth to adaptive quests. In this project. The system is comprehensively developed, including the quest generation and optimal search, as well as a full videogame, in which the rest of the system will be embedded so as to complete it. The final result is fully functional and playable. The theoretical basis of the project comes from the symbiosis of two different arts: procedural content generation and interactive storytelling.
Resumo:
Open source is a software development paradigm that has seen a huge rise in recent years. It reduces IT costs and time to market, while increasing security and reliability. However, the difficulty in integrating developments from different communities and stakeholders prevents this model from reaching its full potential. This is mainly due to the challenge of determining and locating the correct dependencies for a given software artifact. To solve this problem we propose the development of an extensible software component repository based upon models. This repository should be capable of solving the dependencies between several components and work with already existing repositories to access the needed artifacts transparently. This repository will also be easily expandable, enabling the creation of modules that support new kinds of dependencies or other existing repository technologies. The proposed solution will work with OSGi components and use OSGi itself.
Resumo:
We study the dynamic response of a wind turbine structure subjected to theoretical seismic motions, taking into account the rotational component of ground shaking. Models are generated for a shallow moderate crustal earthquake in the Madrid Region (Spain). Synthetic translational and rotational time histories are computed using the Discrete Wavenumber Method, assuming a point source and a horizontal layered earth structure. These are used to analyze the dynamic response of a wind turbine, represented by a simple finite element model. Von Mises stress values at different heights of the tower are used to study the dynamical structural response to a set of synthetic ground motion time histories
Resumo:
Time domain laser reflectance spectroscopy (TDRS) was applied for the first time to evaluate internal fruit quality. This technique, known in medicine-related knowledge areas, has not been used before in agricultural or food research. It allows the simultaneous non-destructive measuring of two optical characteristics of the tissues: light scattering and absorption. Models to measure firmness, sugar & acid contents in kiwifruit, tomato, apple, peach, nectarine and other fruits were built using sequential statistical techniques: principal component analysis, multiple stepwise linear regression, clustering and discriminant analysis. Consistent correlations were established between the two parameters measured with TDRS, i.e. absorption & transport scattering coefficients, with chemical constituents (sugars and acids) and firmness, respectively. Classification models were built to sort fruits into three quality grades, according to their firmness, soluble solids and acidity.
Resumo:
Algorithms for distributed agreement are a powerful means for formulating distributed versions of existing centralized algorithms. We present a toolkit for this task and show how it can be used systematically to design fully distributed algorithms for static linear Gaussian models, including principal component analysis, factor analysis, and probabilistic principal component analysis. These algorithms do not rely on a fusion center, require only low-volume local (1-hop neighborhood) communications, and are thus efficient, scalable, and robust. We show how they are also guaranteed to asymptotically converge to the same solution as the corresponding existing centralized algorithms. Finally, we illustrate the functioning of our algorithms on two examples, and examine the inherent cost-performance tradeoff.
Resumo:
Different procedures for monitoring the evolution of leafy vegetables, under plastic covers during cold storage, have been studied. Fifteen spinach leaves were put inside Petri dishes covered with three different plastic films and stored at 4 °C for 21 days. Hyperspectral images were taken during this storage. A radiometric correction is proposed in order to avoid the variation in transmittance of the plastic films during time in the hyperspectral images. Afterwards, three spectral pre-processing procedures (no pre-process, Savitsky–Golay and Standard Normal Variate, combined with Principal Component Analysis) were applied to obtain different models. The corresponding artificial images of scores were studied by means of Analysis of Variance to compare their ability to sense the aging of the leaves. All models were able to monitor the aging through storage. Radiometric correction seemed to work properly and could allow the supervision of shelf-life in leafy vegetables through commercial transparent films.
Resumo:
In the recent years the missing fourth component, the memristor, was successfully synthesized. However, the mathematical complexity and variety of the models behind this component, in addition to the existence of convergence problems in the simulations, make the design of memristor-based applications long and difficult. In this work we present a memristor model characterization framework which supports the automated generation of subcircuit files. The proposed environment allows the designer to choose and parameterize the memristor model that best suits for a given application. The framework carries out characterizing simulations in order to study the possible non-convergence problems, solving the dependence on the simulation conditions and guaranteeing the functionality and performance of the design. Additionally, the occurrence of undesirable effects related to PVT variations is also taken into account. By performing a Monte Carlo or a corner analysis, the designer is aware of the safety margins which assure the correct device operation.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.
Resumo:
Stochastic model updating must be considered for quantifying uncertainties inherently existing in real-world engineering structures. By this means the statistical properties,instead of deterministic values, of structural parameters can be sought indicating the parameter variability. However, the implementation of stochastic model updating is much more complicated than that of deterministic methods particularly in the aspects of theoretical complexity and low computational efficiency. This study attempts to propose a simple and cost-efficient method by decomposing a stochastic updating process into a series of deterministic ones with the aid of response surface models and Monte Carlo simulation. The response surface models are used as surrogates for original FE models in the interest of programming simplification, fast response computation and easy inverse optimization. Monte Carlo simulation is adopted for generating samples from the assumed or measured probability distributions of responses. Each sample corresponds to an individual deterministic inverse process predicting the deterministic values of parameters. Then the parameter means and variances can be statistically estimated based on all the parameter predictions by running all the samples. Meanwhile, the analysis of variance approach is employed for the evaluation of parameter variability significance. The proposed method has been demonstrated firstly on a numerical beam and then a set of nominally identical steel plates tested in the laboratory. It is found that compared with the existing stochastic model updating methods, the proposed method presents similar accuracy while its primary merits consist in its simple implementation and cost efficiency in response computation and inverse optimization.
Resumo:
The existence of discontinuities within the double-adiabatic Hall-magnetohydrodynamics (MHD) model is discussed. These solutions are transitional layers where some of the plasma properties change from one equilibrium state to another. Under the assumption of traveling wave solutions with velocity C and propagation angle θ with respect to the ambient magnetic field, the Hall-MHD model reduces to a dynamical system and the waves are heteroclinic orbits joining two different fixed points. The analysis of the fixed points rules out the existence of rotational discontinuities. Simple considerations about the Hamiltonian nature of the system show that, unlike dissipative models, the intermediate shock waves are organized in branches in parameter space, i.e., they occur if a given relationship between θ and C is satisfied. Electron-polarized (ion-polarized) shock waves exhibit, in addition to a reversal of the magnetic field component tangential to the shock front, a maximum (minimum) of the magnetic field amplitude. The jumps of the magnetic field and the relative specific volume between the downstream and the upstream states as a function of the plasma properties are presented. The organization in parameter space of localized structures including in the model the influence of finite Larmor radius is discussed
Resumo:
Hoy en día, por primera vez en la historia, la mayor parte de la población podrá vivir hasta los sesenta años y más (United Nations, 2015). Sin embargo, todavía existe poca evidencia que demuestre que las personas mayores, estén viviendo con mejor salud que sus padres, a la misma edad, ya que la mayoría de los problemas de salud en edades avanzadas están asociados a las enfermedades crónicas (WHO, 2015). Los sistemas sanitarios de los países desarrollados funcionan adecuadamente cuando se trata del cuidado de enfermedades agudas, pero no son lo suficientemente eficaces en la gestión de las enfermedades crónicas. Durante la última década, se han realizado esfuerzos para mejorar esta gestión, por medio de la utilización de estrategias de prevención y de reenfoque de la provisión de los servicios de atención para la salud (Kane et al. 2005). Según una revisión sistemática de modelos de cuidado de salud, comisionada por el sistema nacional de salud Británico, pocos modelos han conceptualizado cuáles son los componentes que hay que utilizar para proporcionar un cuidado crónico efectivo, y estos componentes no han sido suficientemente estructurados y articulados. Por lo tanto, no hay suficiente evidencia sobre el impacto real de cualquier modelo existente en la actualidad (Ham, 2006). Las innovaciones podrían ayudar a conseguir mejores diagnósticos, tratamientos y gestión de pacientes crónicos, así como a dar soporte a los profesionales y a los pacientes en el cuidado. Sin embargo, la forma en las que estas innovaciones se proporcionan no es lo suficientemente eficiente, efectiva y amigable para el usuario. Para mejorar esto, hace falta crear equipos de trabajo y estrategias multidisciplinares. En conclusión, hacen falta actividades que permitan conseguir que las innovaciones sean utilizadas en los sistemas de salud que quieren mejorar la gestión del cuidado crónico, para que sea posible: 1) traducir la “atención sanitaria basada en la evidencia” en “conocimiento factible”; 2) hacer frente a la complejidad de la atención sanitaria a través de una investigación multidisciplinaria; 3) identificar una aproximación sistemática para que se establezcan intervenciones innovadoras en el cuidado de salud. El marco de referencia desarrollado en este trabajo de investigación es un intento de aportar estas mejoras. Las siguientes hipótesis han sido propuestas: Hipótesis 1: es posible definir un proceso de traducción que convierta un modelo de cuidado crónico en una descripción estructurada de objetivos, requisitos e indicadores clave de rendimiento. Hipótesis 2: el proceso de traducción, si se ejecuta a través de elementos basados en la evidencia, multidisciplinares y de orientación económica, puede convertir un modelo de cuidado crónico en un marco descriptivo, que define el ciclo de vida de soluciones innovadoras para el cuidado de enfermedades crónicas. Hipótesis 3: es posible definir un método para evaluar procesos, resultados y capacidad de desarrollar habilidades, y asistir equipos multidisciplinares en la creación de soluciones innovadoras para el cuidado crónico. Hipótesis 4: es posible dar soporte al desarrollo de soluciones innovadoras para el cuidado crónico a través de un marco de referencia y conseguir efectos positivos, medidos en indicadores clave de rendimiento. Para verificar las hipótesis, se ha definido una aproximación metodológica compuesta de cuatro Fases, cada una asociada a una hipótesis. Antes de esto, se ha llevado a cabo una “Fase 0”, donde se han analizado los antecedentes sobre el problema (i.e. adopción sistemática de la innovación en el cuidado crónico) desde una perspectiva multi-dominio y multi-disciplinar. Durante la fase 1, se ha desarrollado un Proceso de Traducción del Conocimiento, elaborado a partir del JBI Joanna Briggs Institute (JBI) model of evidence-based healthcare (Pearson, 2005), y sobre el cual se han definido cuatro Bloques de Innovación. Estos bloques consisten en una descripción de elementos innovadores, definidos en la fase 0, que han sido añadidos a los cuatros elementos que componen el modelo JBI. El trabajo llevado a cabo en esta fase ha servido también para definir los materiales que el proceso de traducción tiene que ejecutar. La traducción que se ha llevado a cabo en la fase 2, y que traduce la mejor evidencia disponible de cuidado crónico en acción: resultado de este proceso de traducción es la parte descriptiva del marco de referencia, que consiste en una descripción de un modelo de cuidado crónico (se ha elegido el Chronic Care Model, Wagner, 1996) en términos de objetivos, especificaciones e indicadores clave de rendimiento y organizada en tres ciclos de innovación (diseño, implementación y evaluación). Este resultado ha permitido verificar la segunda hipótesis. Durante la fase 3, para demostrar la tercera hipótesis, se ha desarrollado un método-mixto de evaluación de equipos multidisciplinares que trabajan en innovaciones para el cuidado crónico. Este método se ha creado a partir del método mixto usado para la evaluación de equipo multidisciplinares translacionales (Wooden, 2013). El método creado añade una dimensión procedural al marco. El resultado de esta fase consiste, por lo tanto, en una primera versión del marco de referencia, lista para ser experimentada. En la fase 4, se ha validado el marco a través de un caso de estudio multinivel y con técnicas de observación-participante como método de recolección de datos. Como caso de estudio se han elegido las actividades de investigación que el grupo de investigación LifeStech ha desarrollado desde el 2008 para mejorar la gestión de la diabetes, actividades realizadas en un contexto internacional. Los resultados demuestran que el marco ha permitido mejorar las actividades de trabajo en distintos niveles: 1) la calidad y cantidad de las publicaciones; 2) se han conseguido dos contratos de investigación sobre diabetes: el primero es un proyecto de investigación aplicada, el segundo es un proyecto financiado para acelerar las innovaciones en el mercado; 3) a través de los indicadores claves de rendimiento propuestos en el marco, una prueba de concepto de un prototipo desarrollado en un proyecto de investigación ha sido transformada en una evaluación temprana de una intervención eHealth para el manejo de la diabetes, que ha sido recientemente incluida en Repositorio de prácticas innovadoras del Partenariado de Innovación Europeo en Envejecimiento saludable y activo. La verificación de las 4 hipótesis ha permitido demonstrar la hipótesis principal de este trabajo de investigación: es posible contribuir a crear un puente entre la atención sanitaria y la innovación y, por lo tanto, mejorar la manera en que el cuidado crónico sea procurado en los sistemas sanitarios. ABSTRACT Nowadays, for the first time in history, most people can expect to live into their sixties and beyond (United Nations, 2015). However, little evidence suggests that older people are experiencing better health than their parents, and most of the health problems of older age are linked to Chronic Diseases (WHO, 2015). The established health care systems in developed countries are well suited to the treatment of acute diseases but are mostly inadequate for dealing with CDs. Healthcare systems are challenging the burden of chronic diseases by putting more emphasis on the prevention of disease and by looking for new ways to reorient the provision of care (Kane et al., 2005). According to an evidence-based review commissioned by the British NHS Institute, few models have conceptualized effective components of care for CDs and these components have been not structured and articulated. “Consequently, there is limited evidence about the real impact of any of the existing models” (Ham, 2006). Innovations could support to achieve better diagnosis, treatment and management for patients across the continuum of care, by supporting health professionals and empowering patients to take responsibility. However, the way they are delivered is not sufficiently efficient, effective and consumer friendly. The improvement of innovation delivery, involves the creation of multidisciplinary research teams and taskforces, rather than just working teams. There are several actions to improve the adoption of innovations from healthcare systems that are tackling the epidemics of CDs: 1) Translate Evidence-Based Healthcare (EBH) into actionable knowledge; 2) Face the complexity of healthcare through multidisciplinary research; 3) Identify a systematic approach to support effective implementation of healthcare interventions through innovation. The framework proposed in this research work is an attempt to provide these improvements. The following hypotheses have been drafted: Hypothesis 1: it is possible to define a translation process to convert a model of chronic care into a structured description of goals, requirements and key performance indicators. Hypothesis 2: a translation process, if executed through evidence-based, multidisciplinary, holistic and business-oriented elements, can convert a model of chronic care in a descriptive framework, which defines the whole development cycle of innovative solutions for chronic disease management. Hypothesis 3: it is possible to design a method to evaluate processes, outcomes and skill acquisition capacities, and assist multidisciplinary research teams in the creation of innovative solutions for chronic disease management. Hypothesis 4: it is possible to assist the development of innovative solutions for chronic disease management through a reference framework and produce positive effects, measured through key performance indicators. In order to verify the hypotheses, a methodological approach, composed of four Phases that correspond to each one of the stated hypothesis, was defined. Prior to this, a “Phase 0”, consisting in a multi-domain and multi-disciplinary background analysis of the problem (i.e.: systematic adoption of innovation to chronic care), was carried out. During phase 1, in order to verify the first hypothesis, a Knowledge Translation Process (KTP) was developed, starting from the JBI Joanna Briggs Institute (JBI) model of evidence-based healthcare was used (Pearson, 2005) and adding Four Innovation Blocks. These blocks represent an enriched description, added to the JBI model, to accelerate the transformation of evidence-healthcare through innovation; the innovation blocks are built on top of the conclusions drawn after Phase 0. The background analysis gave also indication on the materials and methods to be used for the execution of the KTP, carried out during phase 2, that translates the actual best available evidence for chronic care into action: this resulted in a descriptive Framework, which is a description of a model of chronic care (the Chronic Care Model was chosen, Wagner, 1996) in terms of goals, specified requirements and Key Performance Indicators, and articulated in the three development cycles of innovation (i.e. design, implementation and evaluation). Thanks to this result the second hypothesis was verified. During phase 3, in order to verify the third hypothesis, a mixed-method to evaluate multidisciplinary teams working on innovations for chronic care, was created, based on a mixed-method used for the evaluation of Multidisciplinary Translational Teams (Wooden, 2013). This method adds a procedural dimension to the descriptive component of the Framework, The result of this phase consisted in a draft version of the framework, ready to be tested in a real scenario. During phase 4, a single and multilevel case study, with participant-observation data collection, was carried out, in order to have a complete but at the same time multi-sectorial evaluation of the framework. The activities that the LifeStech research group carried out since 2008 to improve the management of diabetes have been selected as case study. The results achieved showed that the framework allowed to improve the research activities in different directions: the quality and quantity of the research publications that LifeStech has issued, have increased substantially; 2 project grants to improve the management of diabetes, have been assigned: the first is a grant funding applied research while the second is about accelerating innovations into the market; by using the assessment KPIs of the framework, the proof of concept validation of a prototype developed in a research project was transformed into an early stage assessment of innovative eHealth intervention for Diabetes Management, which has been recently included in the repository of innovative practice of the European Innovation Partnership on Active and Health Ageing initiative. The verification of the 4 hypotheses lead to verify the main hypothesis of this research work: it is possible to contribute to bridge the gap between healthcare and innovation and, in turn, improve the way chronic care is delivered by healthcare systems.