3 resultados para variables search

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a method for the static resource usage analysis of MiniZinc models. The analysis can infer upper bounds on the usage that a MiniZinc model will make of some resources such as the number of constraints of a given type (equality, disequality, global constraints, etc.), the number of variables (search variables or temporary variables), or the size of the expressions before calling the solver. These bounds are obtained from the models independently of the concrete input data (the instance data) and are in general functions of sizes of such data. In our approach, MiniZinc models are translated into Ciao programs which are then analysed by the CiaoPP system. CiaoPP includes a parametric analysis framework for resource usage in which the user can define resources and express the resource usage of library procedures (and certain program construets) by means of a language of assertions. We present the approach and report on a preliminary implementation, which shows the feasibility of the approach, and provides encouraging results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control part of the execution of a constraint logic program can be conceptually shown as a search-tree, where nodes correspond to calis, and whose branches represent conjunctions and disjunctions. This tree represents the search space traversed by the program, and has also a direct relationship with the amount of work performed by the program. The nodes of the tree can be used to display information regarding the state and origin of instantiation of the variables involved in each cali. This depiction can also be used for the enumeration process. These are the features implemented in APT, a tool which runs constraint logic programs while depicting a (modified) search-tree, keeping at the same time information about the state of the variables at every moment in the execution. This information can be used to replay the execution at will, both forwards and backwards in time. These views can be abstracted when the size of the execution requires it. The search-tree view is used as a framework onto which constraint-level visualizations (such as those presented in the following chapter) can be attached.