3 resultados para unstructured data

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente Trabajo Fin de Grado (TFG) surge de la necesidad de disponer de tecnologías que faciliten el Procesamiento de Lenguaje Natural (NLP) en español dentro del sector de la medicina. Centrado concretamente en la extracción de conocimiento de las historias clínicas electrónicas (HCE), que recogen toda la información relacionada con la salud del paciente y en particular, de los documentos recogidos en dichas historias, pretende la obtención de todos los términos relacionados con la medicina. El Procesamiento de Lenguaje Natural permite la obtención de datos estructurados a partir de información no estructurada. Estas técnicas permiten un análisis de texto que genera etiquetas aportando significado semántico a las palabras para la manipulación de información. A partir de la investigación realizada del estado del arte en NLP y de las tecnologías existentes para otras lenguas, se propone como solución un módulo de anotación de términos médicos extraídos de documentos clínicos. Como términos médicos se han considerado síntomas, enfermedades, partes del cuerpo o tratamientos obtenidos de UMLS, una ontología categorizada que agrega distintas fuentes de datos médicos. Se ha realizado el diseño y la implementación del módulo así como el análisis de los resultados obtenidos realizando una evaluación con treinta y dos documentos que contenían 1372 menciones de terminología médica y que han dado un resultado medio de Precisión: 70,4%, Recall: 36,2%, Accuracy: 31,4% y F-Measure: 47,2%.---ABSTRACT---This Final Thesis arises from the need for technologies that facilitate the Natural Language Processing (NLP) in Spanish in the medical sector. Specifically it is focused on extracting knowledge from Electronic Health Records (EHR), which contain all the information related to the patient's health and, in particular, it expects to obtain all the terms related to medicine from the documents contained in these records. Natural Language Processing allows us to obtain structured information from unstructured data. These techniques enable analysis of text generating labels providing semantic meaning to words for handling information. From the investigation of the state of the art in NLP and existing technologies in other languages, an annotation module of medical terms extracted from clinical documents is proposed as a solution. Symptoms, diseases, body parts or treatments are considered part of the medical terms contained in UMLS ontology which is categorized joining different sources of medical data. This project has completed the design and implementation of a module and the analysis of the results have been obtained. Thirty two documents which contain 1372 mentions of medical terminology have been evaluated and the average results obtained are: Precision: 70.4% Recall: 36.2% Accuracy: 31.4% and F-Measure: 47.2%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En los últimos años han surgido nuevos campos de las tecnologías de la información que exploran el tratamiento de la gran cantidad de datos digitales existentes y cómo transformarlos en conocimiento explícito. Las técnicas de Procesamiento del Lenguaje Natural (NLP) son capaces de extraer información de los textos digitales presentados en forma narrativa. Además, las técnicas de machine learning clasifican instancias o ejemplos en función de sus atributos, en distintas categorías, aprendiendo de otros previamente clasificados. Los textos clínicos son una gran fuente de información no estructurada; en consecuencia, información no explotada en su totalidad. Algunos términos usados en textos clínicos se encuentran en una situación de afirmación, negación, hipótesis o histórica. La detección de esta situación es necesaria para la estructuración de información, pero a su vez tiene una gran complejidad. Extrayendo características lingüísticas de los elementos, o tokens, de los textos mediante NLP; transformando estos tokens en instancias y las características en atributos, podemos mediante técnicas de machine learning clasificarlos con el objetivo de detectar si se encuentran afirmados, negados, hipotéticos o históricos. La selección de los atributos que cada token debe tener para su clasificación, así como la selección del algoritmo de machine learning utilizado son elementos cruciales para la clasificación. Son, de hecho, los elementos que componen el modelo de clasificación. Consecuentemente, este trabajo aborda el proceso de extracción de características, selección de atributos y selección del algoritmo de machine learning para la detección de la negación en textos clínicos en español. Se expone un modelo para la clasificación que, mediante el algoritmo J48 y 35 atributos obtenidos de características lingüísticas (morfológicas y sintácticas) y disparadores de negación, detecta si un token está negado en 465 frases provenientes de textos clínicos con un F-Score del 73%, una exhaustividad del 66% y una precisión del 81% con una validación cruzada de 10 iteraciones. ---ABSTRACT--- New information technologies have emerged in the recent years which explore the processing of the huge amount of existing digital data and its transformation into knowledge. Natural Language Processing (NLP) techniques are able to extract certain features from digital texts. Additionally, through machine learning techniques it is feasible to classify instances according to different categories, learning from others previously classified. Clinical texts contain great amount of unstructured data, therefore information not fully exploited. Some terms (tokens) in clinical texts appear in different situations such as affirmed, negated, hypothetic or historic. Detecting this situation is necessary for the structuring of this data, however not simple. It is possible to detect whether if a token is negated, affirmed, hypothetic or historic by extracting its linguistic features by NLP; transforming these tokens into instances, the features into attributes, and classifying these instances through machine learning techniques. Selecting the attributes each instance must have, and choosing the machine learning algorithm are crucial issues for the classification. In fact, these elements set the classification model. Consequently, this work approaches the features retrieval as well as the attributes and algorithm selection process used by machine learning techniques for the detection of negation in clinical texts in Spanish. We present a classification model which, through J48 algorithm and 35 attributes from linguistic features (morphologic and syntactic) and negation triggers, detects whether if a token is negated in 465 sentences from historical records, with a result of 73% FScore, 66% recall and 81% precision using a 10-fold cross-validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los tipos de datos concurrentes son implementaciones concurrentes de las abstracciones de datos clásicas, con la diferencia de que han sido específicamente diseñados para aprovechar el gran paralelismo disponible en las modernas arquitecturas multiprocesador y multinúcleo. La correcta manipulación de los tipos de datos concurrentes resulta esencial para demostrar la completa corrección de los sistemas de software que los utilizan. Una de las mayores dificultades a la hora de diseñar y verificar tipos de datos concurrentes surge de la necesidad de tener que razonar acerca de un número arbitrario de procesos que invocan estos tipos de datos de manera concurrente. Esto requiere considerar sistemas parametrizados. En este trabajo estudiamos la verificación formal de propiedades temporales de sistemas concurrentes parametrizados, poniendo especial énfasis en programas que manipulan estructuras de datos concurrentes. La principal dificultad a la hora de razonar acerca de sistemas concurrentes parametrizados proviene de la interacción entre el gran nivel de concurrencia que éstos poseen y la necesidad de razonar al mismo tiempo acerca de la memoria dinámica. La verificación de sistemas parametrizados resulta en sí un problema desafiante debido a que requiere razonar acerca de estructuras de datos complejas que son accedidas y modificadas por un numero ilimitado de procesos que manipulan de manera simultánea el contenido de la memoria dinámica empleando métodos de sincronización poco estructurados. En este trabajo, presentamos un marco formal basado en métodos deductivos capaz de ocuparse de la verificación de propiedades de safety y liveness de sistemas concurrentes parametrizados que manejan estructuras de datos complejas. Nuestro marco formal incluye reglas de prueba y técnicas especialmente adaptadas para sistemas parametrizados, las cuales trabajan en colaboración con procedimientos de decisión especialmente diseñados para analizar complejas estructuras de datos concurrentes. Un aspecto novedoso de nuestro marco formal es que efectúa una clara diferenciación entre el análisis del flujo de control del programa y el análisis de los datos que se manejan. El flujo de control del programa se analiza utilizando reglas de prueba y técnicas de verificación deductivas especialmente diseñadas para lidiar con sistemas parametrizados. Comenzando a partir de un programa concurrente y la especificación de una propiedad temporal, nuestras técnicas deductivas son capaces de generar un conjunto finito de condiciones de verificación cuya validez implican la satisfacción de dicha especificación temporal por parte de cualquier sistema, sin importar el número de procesos que formen parte del sistema. Las condiciones de verificación generadas se corresponden con los datos manipulados. Estudiamos el diseño de procedimientos de decisión especializados capaces de lidiar con estas condiciones de verificación de manera completamente automática. Investigamos teorías decidibles capaces de describir propiedades de tipos de datos complejos que manipulan punteros, tales como implementaciones imperativas de pilas, colas, listas y skiplists. Para cada una de estas teorías presentamos un procedimiento de decisión y una implementación práctica construida sobre SMT solvers. Estos procedimientos de decisión son finalmente utilizados para verificar de manera automática las condiciones de verificación generadas por nuestras técnicas de verificación parametrizada. Para concluir, demostramos como utilizando nuestro marco formal es posible probar no solo propiedades de safety sino además de liveness en algunas versiones de protocolos de exclusión mutua y programas que manipulan estructuras de datos concurrentes. El enfoque que presentamos en este trabajo resulta ser muy general y puede ser aplicado para verificar un amplio rango de tipos de datos concurrentes similares. Abstract Concurrent data types are concurrent implementations of classical data abstractions, specifically designed to exploit the great deal of parallelism available in modern multiprocessor and multi-core architectures. The correct manipulation of concurrent data types is essential for the overall correctness of the software system built using them. A major difficulty in designing and verifying concurrent data types arises by the need to reason about any number of threads invoking the data type simultaneously, which requires considering parametrized systems. In this work we study the formal verification of temporal properties of parametrized concurrent systems, with a special focus on programs that manipulate concurrent data structures. The main difficulty to reason about concurrent parametrized systems comes from the combination of their inherently high concurrency and the manipulation of dynamic memory. This parametrized verification problem is very challenging, because it requires to reason about complex concurrent data structures being accessed and modified by threads which simultaneously manipulate the heap using unstructured synchronization methods. In this work, we present a formal framework based on deductive methods which is capable of dealing with the verification of safety and liveness properties of concurrent parametrized systems that manipulate complex data structures. Our framework includes special proof rules and techniques adapted for parametrized systems which work in collaboration with specialized decision procedures for complex data structures. A novel aspect of our framework is that it cleanly differentiates the analysis of the program control flow from the analysis of the data being manipulated. The program control flow is analyzed using deductive proof rules and verification techniques specifically designed for coping with parametrized systems. Starting from a concurrent program and a temporal specification, our techniques generate a finite collection of verification conditions whose validity entails the satisfaction of the temporal specification by any client system, in spite of the number of threads. The verification conditions correspond to the data manipulation. We study the design of specialized decision procedures to deal with these verification conditions fully automatically. We investigate decidable theories capable of describing rich properties of complex pointer based data types such as stacks, queues, lists and skiplists. For each of these theories we present a decision procedure, and its practical implementation on top of existing SMT solvers. These decision procedures are ultimately used for automatically verifying the verification conditions generated by our specialized parametrized verification techniques. Finally, we show how using our framework it is possible to prove not only safety but also liveness properties of concurrent versions of some mutual exclusion protocols and programs that manipulate concurrent data structures. The approach we present in this work is very general, and can be applied to verify a wide range of similar concurrent data types.