10 resultados para twin defect

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detailed study of the deterioration suffered by the materials of the components of a nuclear facility, in particular those forming part of the reactor core, is a topic of great interest which importance derives in large technological and economic implications. Since changes in the atomic-structural properties of relevant components pose a risk to the smooth operation with clear consequences for security and life of the plant, controlling these factors is essential in any development of engineering design and implementation. In recent times, tungsten has been proposed as a structural material based on its good resistance to radiation, but still needs to be done an extensive study on the influence of temperature on the behavior of this material under radiation damage. This work aims to contribute in this regard. Molecular Dynamics (MD) simulations were carried out to determine the influence of temperature fluctuations on radiation damage production and evolution in Tungsten. We have particularly focused our study in the dynamics of defect creation, recombination, and diffusion properties. PKA energies were sampled in a range from 5 to 50 KeV. Three different temperature scenarios were analyzed, from very low temperatures (0-200K), up to high temperature conditions (300-500 K). We studied the creation of defects, vacancies and interstitials, recombination rates, diffusion properties, cluster formation, their size and evolution. Simulations were performed using Lammps and the Zhou EAM potential for W

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most empirical disciplines promote the reuse and sharing of datasets, as it leads to greater possibility of replication. While this is increasingly the case in Empirical Software Engineering, some of the most popular bug-fix datasets are now known to be biased. This raises two significants concerns: first, that sample bias may lead to underperforming prediction models, and second, that the external validity of the studies based on biased datasets may be suspect. This issue has raised considerable consternation in the ESE literature in recent years. However, there is a confounding factor of these datasets that has not been examined carefully: size. Biased datasets are sampling only some of the data that could be sampled, and doing so in a biased fashion; but biased samples could be smaller, or larger. Smaller data sets in general provide less reliable bases for estimating models, and thus could lead to inferior model performance. In this setting, we ask the question, what affects performance more? bias, or size? We conduct a detailed, large-scale meta-analysis, using simulated datasets sampled with bias from a high-quality dataset which is relatively free of bias. Our results suggest that size always matters just as much bias direction, and in fact much more than bias direction when considering information-retrieval measures such as AUC and F-score. This indicates that at least for prediction models, even when dealing with sampling bias, simply finding larger samples can sometimes be sufficient. Our analysis also exposes the complexity of the bias issue, and raises further issues to be explored in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work implements an optimization of the phosphorus gettering effect during the contact co-firing step by means of both simulations and experiments in an industrial belt furnace. An optimized temperature profile, named ‘extended co-firing step’, is presented. Simulations show that the effect of the short annealing on the final interstitial iron concentration depends strongly on the initial contamination level of the material and that the ‘extended co-firing’ temperature profile can enhance the gettering effect within a small additional time. Experimental results using sister wafers from the same multicrystalline silicon ingot confirm these trends and show the potential of this new defect engineering tool to improve the solar cell efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the stability and dynamics of non-Boussinesq convection in pure gases ?CO2 and SF6? with Prandtl numbers near Pr? 1 and in a H2-Xe mixture with Pr= 0.17. Focusing on the strongly nonlinear regime we employ Galerkin stability analyses and direct numerical simulations of the Navier-Stokes equations. For Pr ? 1 and intermediate non-Boussinesq effects we find reentrance of stable hexagons as the Rayleigh number is increased. For stronger non-Boussinesq effects the usual, transverse side-band instability is superseded by a longitudinal side-band instability. Moreover, the hexagons do not exhibit any amplitude instability to rolls. Seemingly, this result contradicts the experimentally observed transition from hexagons to rolls. We resolve this discrepancy by including the effect of the lateral walls. Non-Boussinesq effects modify the spiral defect chaos observed for larger Rayleigh numbers. For convection in SF6 we find that non-Boussinesq effects strongly increase the number of small, compact convection cells and with it enhance the cellular character of the patterns. In H2-Xe, closer to threshold, we find instead an enhanced tendency toward roll-like structures. In both cases the number of spirals and of targetlike components is reduced. We quantify these effects using recently developed diagnostics of the geometric properties of the patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the observation of spiral patterns in a wide range of physical, chemical, and biological systems, we present an automated approach that aims at characterizing quantitatively spiral-like elements in complex stripelike patterns. The approach provides the location of the spiral tip and the size of the spiral arms in terms of their arc length and their winding number. In addition, it yields the number of pattern components (Betti number of order 1), as well as their size and certain aspects of their shape. We apply the method to spiral defect chaos in thermally driven Rayleigh- Bénard convection and find that the arc length of spirals decreases monotonically with decreasing Prandtl number of the fluid and increasing heating. By contrast, the winding number of the spirals is nonmonotonic in the heating. The distribution function for the number of spirals is significantly narrower than a Poisson distribution. The distribution function for the winding number shows approximately an exponential decay. It depends only weakly on the heating, but strongly on the Prandtl number. Large spirals arise only for larger Prandtl numbers. In this regime the joint distribution for the spiral length and the winding number exhibits a three-peak structure, indicating the dominance of Archimedean spirals of opposite sign and relatively straight sections. For small Prandtl numbers the distribution function reveals a large number of small compact pattern components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we introduce the Object Kinetic Monte Carlo (OKMC) simulator MMonCa and simulate the defect evolution in three different materials. We start by explaining the theory of OKMC and showing some details of how such theory is implemented by creating generic structures and algorithms in the objects that we want to simulate. Then we successfully reproduce simulated results for defect evolution in iron, silicon and tungsten using our simulator and compare with available experimental data and similar simulations. The comparisons validate MMonCa showing that it is powerful and flexible enough to be customized and used to study the damage evolution of defects in a wide range of solid materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The era of the seed-cast grown monocrystalline-based silicon ingots is coming. Mono-like, pseudomono or quasimono wafers are product labels that can be nowadays found in the market, as a critical innovation for the photovoltaic industry. They integrate some of the most favorable features of the conventional silicon substrates for solar cells, so far, such as the high solar cell efficiency offered by the monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost, high productivity and full square-shape that characterize the well-known multicrystalline casting growth method. Nevertheless, this innovative crystal growth approach still faces a number of mass scale problems that need to be resolved, in order to gain a deep, 100% reliable and worldwide market: (i) extended defects formation during the growth process; (ii) optimization of the seed recycling; and (iii) parts of the ingots giving low solar cells performance, which directly affect the production costs and yield of this approach. Therefore, this paper presents a series of casting crystal growth experiments and characterization studies from ingots, wafers and cells manufactured in an industrial approach, showing the main sources of crystal defect formation, impurity enrichment and potential consequences at solar cell level. The previously mentioned technological drawbacks are directly addressed, proposing industrial actions to pave the way of this new wafer technology to high efficiency solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design of an original twin capacitive load that is able of tracing simultaneously the I?V characteristics of two photovoltaic modules. Besides, an example of the application of this dual system to the outdoor rating of photovoltaic modules is presented, whose results have shown a good degree of repeatability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En los últimos años, el Ge ha ganado de nuevo atención con la finalidad de ser integrado en el seno de las existentes tecnologías de microelectrónica. Aunque no se le considera como un canddato capaz de reemplazar completamente al Si en el futuro próximo, probalemente servirá como un excelente complemento para aumentar las propiedades eléctricas en dispositivos futuros, especialmente debido a su alta movilidad de portadores. Esta integración requiere de un avance significativo del estado del arte en los procesos de fabricado. Técnicas de simulación, como los algoritmos de Monte Carlo cinético (KMC), proporcionan un ambiente atractivo para llevar a cabo investigación y desarrollo en este campo, especialmente en términos de costes en tiempo y financiación. En este estudio se han usado, por primera vez, técnicas de KMC con el fin entender el procesado “front-end” de Ge en su fabricación, específicamente la acumulación de dañado y amorfización producidas por implantación iónica y el crecimiento epitaxial en fase sólida (SPER) de las capas amorfizadas. Primero, simulaciones de aproximación de clisiones binarias (BCA) son usadas para calcular el dañado causado por cada ión. La evolución de este dañado en el tiempo se simula usando KMC sin red, o de objetos (OKMC) en el que sólamente se consideran los defectos. El SPER se simula a través de una aproximación KMC de red (LKMC), siendo capaz de seguir la evolución de los átomos de la red que forman la intercara amorfo/cristalina. Con el modelo de amorfización desarrollado a lo largo de este trabajo, implementado en un simulador multi-material, se pueden simular todos estos procesos. Ha sido posible entender la acumulación de dañado, desde la generación de defectos puntuales hasta la formación completa de capas amorfas. Esta acumulación ocurre en tres regímenes bien diferenciados, empezando con un ritmo lento de formación de regiones de dañado, seguido por una rápida relajación local de ciertas áreas en la fase amorfa donde ambas fases, amorfa y cristalina, coexisten, para terminar en la amorfización completa de capas extensas, donde satura el ritmo de acumulación. Dicha transición ocurre cuando la concentración de dañado supera cierto valor límite, el cual es independiente de las condiciones de implantación. Cuando se implantan los iones a temperaturas relativamente altas, el recocido dinámico cura el dañado previamente introducido y se establece una competición entre la generación de dañado y su disolución. Estos efectos se vuelven especialmente importantes para iones ligeros, como el B, el cual crea dañado más diluido, pequeño y distribuido de manera diferente que el causado por la implantación de iones más pesados, como el Ge. Esta descripción reproduce satisfactoriamente la cantidad de dañado y la extensión de las capas amorfas causadas por implantación iónica reportadas en la bibliografía. La velocidad de recristalización de la muestra previamente amorfizada depende fuertemente de la orientación del sustrato. El modelo LKMC presentado ha sido capaz de explicar estas diferencias entre orientaciones a través de un simple modelo, dominado por una única energía de activación y diferentes prefactores en las frecuencias de SPER dependiendo de las configuraciones de vecinos de los átomos que recristalizan. La formación de maclas aparece como una consecuencia de esta descripción, y es predominante en sustratos crecidos en la orientación (111)Ge. Este modelo es capaz de reproducir resultados experimentales para diferentes orientaciones, temperaturas y tiempos de evolución de la intercara amorfo/cristalina reportados por diferentes autores. Las parametrizaciones preliminares realizadas de los tensores de activación de tensiones son también capaces de proveer una buena correlación entre las simulaciones y los resultados experimentales de velocidad de SPER a diferentes temperaturas bajo una presión hidrostática aplicada. Los estudios presentados en esta tesis han ayudado a alcanzar un mejor entendimiento de los mecanismos de producción de dañado, su evolución, amorfización y SPER para Ge, además de servir como una útil herramienta para continuar el trabajo en este campo. In the recent years, Ge has regained attention to be integrated into existing microelectronic technologies. Even though it is not thought to be a feasible full replacement to Si in the near future, it will likely serve as an excellent complement to enhance electrical properties in future devices, specially due to its high carrier mobilities. This integration requires a significant upgrade of the state-of-the-art of regular manufacturing processes. Simulation techniques, such as kinetic Monte Carlo (KMC) algorithms, provide an appealing environment to research and innovation in the field, specially in terms of time and funding costs. In the present study, KMC techniques are used, for the first time, to understand Ge front-end processing, specifically damage accumulation and amorphization produced by ion implantation and Solid Phase Epitaxial Regrowth (SPER) of the amorphized layers. First, Binary Collision Approximation (BCA) simulations are used to calculate the damage caused by every ion. The evolution of this damage over time is simulated using non-lattice, or Object, KMC (OKMC) in which only defects are considered. SPER is simulated through a Lattice KMC (LKMC) approach, being able to follow the evolution of the lattice atoms forming the amorphous/crystalline interface. With the amorphization model developed in this work, implemented into a multi-material process simulator, all these processes can be simulated. It has been possible to understand damage accumulation, from point defect generation up to full amorphous layers formation. This accumulation occurs in three differentiated regimes, starting at a slow formation rate of the damage regions, followed by a fast local relaxation of areas into the amorphous phase where both crystalline and amorphous phases coexist, ending in full amorphization of extended layers, where the accumulation rate saturates. This transition occurs when the damage concentration overcomes a certain threshold value, which is independent of the implantation conditions. When implanting ions at relatively high temperatures, dynamic annealing takes place, healing the previously induced damage and establishing a competition between damage generation and its dissolution. These effects become specially important for light ions, as B, for which the created damage is more diluted, smaller and differently distributed than that caused by implanting heavier ions, as Ge. This description successfully reproduces damage quantity and extension of amorphous layers caused by means of ion implantation reported in the literature. Recrystallization velocity of the previously amorphized sample strongly depends on the substrate orientation. The presented LKMC model has been able to explain these differences between orientations through a simple model, dominated by one only activation energy and different prefactors for the SPER rates depending on the neighboring configuration of the recrystallizing atoms. Twin defects formation appears as a consequence of this description, and are predominant for (111)Ge oriented grown substrates. This model is able to reproduce experimental results for different orientations, temperatures and times of evolution of the amorphous/crystalline interface reported by different authors. Preliminary parameterizations for the activation strain tensors are able to also provide a good match between simulations and reported experimental results for SPER velocities at different temperatures under the appliance of hydrostatic pressure. The studies presented in this thesis have helped to achieve a greater understanding of damage generation, evolution, amorphization and SPER mechanisms in Ge, and also provide a useful tool to continue research in this field.