8 resultados para transporters
em Universidad Politécnica de Madrid
Resumo:
The widespread presence of Na+ specific uptake systems across plants and fungi is a controversial topic. In this study we identify two HAK genes, one in the moss Physcomitrella patens and the other in the yeast Yarrowia lipolytica, that encode Na+ specific transporters. Because HAK genes are numerous in plants and are duplicated in many fungi, our findings suggest that some HAK genes encode Na+ transporters and that Na+ might play physiological functions in plants and fungi more extensively than is currently thought.
Resumo:
El suelo salino impone un estrés abiótico importante que causa graves problemas en la agricultura ya que la mayoría de los cultivos se ven afectados por la salinidad debido a efectos osmóticos y tóxicos. Por ello, la contaminación y la escasez de agua dulce, la salinización progresiva de tierras y el aumento exponencial de la población humana representan un grave problema que amenaza la seguridad alimentaria mundial para las generaciones futuras. Por lo tanto, aumentar la tolerancia a la salinidad de los cultivos es un objetivo estratégico e ineludible para garantizar el suministro de alimentos en el futuro. Mantener una óptima homeostasis de K+ en plantas que sufren estrés salino es un objetivo importante en el proceso de obtención de plantas tolerantes a la salinidad. Aunque el modelo de la homeostasis de K+ en las plantas está razonablemente bien descrito en términos de entrada de K+, muy poco se sabe acerca de los genes implicados en la salida de K+ o de su liberación desde la vacuola. En este trabajo se pretende aclarar algunos de los mecanismos implicados en la homeostasis de K+ en plantas. Para ello se eligió la briofita Physcomitrella patens, una planta no vascular de estructura simple y de fase haploide dominante que, entre muchas otras cualidades, hacen que sea un modelo ideal. Lo más importante es que no sólo P. patens es muy tolerante a altas concentraciones de Na+, sino que también su posición filogenética en la evolución de las plantas abre la posibilidad de estudiar los cambios claves que, durante el curso de la evolución, se produjeron en las diversas familias de los transportadores de K+. Se han propuesto varios transportadores de cationes como candidatos que podrían tener un papel en la salida de K+ o su liberación desde la vacuola, especialmente miembros de la familia CPA2 que contienen las familias de transportadores KEA y CHX. En este estudio se intenta aumentar nuestra comprensión de las funciones de los transportadores de CHX en las células de las plantas usando P. patens, como ya se ha dicho. En esta especie, se han identificado cuatro genes CHX, PpCHX1-4. Dos de estos genes, PpCHX1 y PpCHX2, se expresan aproximadamente al mismo nivel que el gen PpACT5, y los otros dos genes muestran una expresión muy baja. La expresión de PpCHX1 y PpCHX2 en mutantes de Escherichia coli defectivos en el transporte de K+ restauraron el crecimiento de esta cepa en medios con bajo contenido de K+, lo que viii sugiere que la entrada de K+ es energizada por un mecanismo de simporte con H+. Por otra parte, estos transportadores suprimieron el defecto asociado a la mutación kha1 en Saccharomyces cerevisiae, lo que sugiere que podrían mediar un antiporte en K+/H+. La proteína PpCHX1-GFP expresada transitoriamente en protoplastos de P. patens co-localizó con un marcador de Golgi. En experimentos similares, la proteína PpCHX2-GFP localizó aparentemente en la membrana plasmática y tonoplasto. Se construyeron las líneas mutantes simples de P. patens ΔPpchx1 y ΔPpchx2, y también el mutante doble ΔPpchx2 ΔPphak1. Los mutantes simples crecieron normalmente en todas las condiciones ensayadas y mostraron flujos de entrada normales de K+ y Rb+; la mutación ΔPpchx2 no aumentó el defecto de las plantas ΔPphak1. En experimentos a largo plazo, las plantas ΔPpchx2 mostraron una retención de Rb+ ligeramente superior que las plantas silvestres, lo que sugiere que PpCHX2 promueve la transferencia de Rb+ desde la vacuola al citosol o desde el citosol al medio externo, actuando en paralelo con otros transportadores. Sugerimos que transportadores de K+ de varias familias están involucrados en la homeostasis de pH de orgánulos ya sea mediante antiporte K+/H+ o simporte K+-H+.ix ABSTRACT Soil salinity is a major abiotic stress causing serious problems in agriculture as most crops are affected by it. Moreover, the contamination and shortage of freshwater, progressive land salinization and exponential increase of human population aggravates the problem implying that world food security may not be ensured for the next generations. Thus, a strategic and an unavoidable goal would be increasing salinity tolerance of plant crops to secure future food supply. Maintaining an optimum K+ homeostasis in plants under salinity stress is an important trait to pursue in the process of engineering salt tolerant plants. Although the model of K+ homeostasis in plants is reasonably well described in terms of K+ influx, very little is known about the genes implicated in K+ efflux or release from the vacuole. In this work, we aim to clarify some of the mechanisms involved in K+ homeostasis in plants. For this purpose, we chose the bryophyte plant Physcomitrella patens, a nonvascular plant of simple structure and dominant haploid phase that, among many other characteristics, makes it an ideal model. Most importantly, not only P. patens is very tolerant to high concentrations of Na+, but also its phylogenetic position in land plant evolution opens the possibility to study the key changes that occurred in K+ transporter families during the course of evolution. Several cation transporter candidates have been proposed to have a role in K+ efflux or release from the vacuole especially members of the CPA2 family which contains the KEA and CHX transporter families. We intended in this study to increase our understanding of the functions of CHX transporters in plant cells using P. patens, in which four CHX genes have been identified, PpCHX1-4. Two of these genes, PpCHX1 and PpCHX2, are expressed at approximately the same level as the PpACT5 gene, but the other two genes show an extremely low expression. PpCHX1 and PpCHX2 restored growth of Escherichia coli mutants on low K+-containing media, suggesting they mediated K+ uptake that may be energized by symport with H+. In contrast, these genes suppressed the defect associated to the kha1 mutation in Saccharomyces cerevisiae, which suggest that they might mediate K+/H+ antiport. PpCHX1-GFP protein transiently expressed in P. patens protoplasts co-localized with a Golgi marker. In similar experiments, the PpCHX2-GFP protein appeared to localize to tonoplast and plasma x membrane. We constructed the ΔPpchx1 and ΔPpchx2 single mutant lines, and the ΔPpchx2 ΔPphak1 double mutant. Single mutant plants grew normally under all the conditions tested and exhibited normal K+ and Rb+ influxes; the ΔPpchx2 mutation did not increase the defect of ΔPphak1 plants. In long-term experiments, ΔPpchx2 plants showed a slightly higher Rb+ retention than wild type plants, which suggests that PpCHX2 mediates the transfer of Rb+ from either the vacuole to the cytosol or from the cytosol to the external medium in parallel with other transporters. We suggest that K+ transporters of several families are involved in the pH homeostasis of organelles by mediating either K+/H+ antiport or K+-H+ symport.
Resumo:
Rhizobium leguminosarum (Rl) es una alfa-proteobacteria capaz de establecer una simbiosis diazotrófica con distintas leguminosas. A pesar de la importancia de esta simbiosis en el balance global del ciclo del nitrógeno, muy pocos genomas de rhizobios han sido secuenciados, que aporten nuevos conocimientos relacionados con las características genéticas que contribuyen a importantes procesos simbióticos. Únicamente tres secuencias completas de Rl han sido publicadas: Rl bv. viciae 3841 y dos genomas de Rl bv. trifolii (WSM1325 y WSM2304), ambos simbiontes de trébol. La secuencia genómica de Rlv UPM791 se ha determinado por medio de secuenciación 454. Este genoma tiene un tamaño aproximado de 7.8 Mb, organizado en un cromosoma y 5 replicones extracromosómicos, que incluyen un plásmido simbiótico de 405 kb. Este nuevo genoma se ha analizado en relación a las funciones simbióticas y adaptativas en comparación con los genomas completos de Rlv 3841 y Rl bv. trifolii WSM1325 y WSM2304. Mientras que los plásmidos pUPM791a y b se encuentran conservados, el plásmido simbiótico pUPM791c exhibe un grado de conservación muy bajo comparado con aquellos descritos en las otras cepas de Rl. Uno de los factores implicados en el establecimiento de la simbiosis es el sistema de comunicación intercelular conocido como Quorum Sensing (QS). El análisis del genoma de Rlv UPM791 ha permitido la identificación de dos sistemas tipo LuxRI mediados por señales de tipo N-acyl-homoserina lactonas (AHLs). El análisis mediante HPLC-MS ha permitido asociar las señales C6-HSL, C7-HSL y C8-HSL al sistema rhiRI, codificado en el plásmido simbiótico; mientras que el sistema cinRI, localizado en el cromosoma, produce 3OH-C14:1-HSL. Se ha identificado una tercera sintasa (TraI) codificada en el plásmido simbiótico, pero su regulador correspondiente se encuentra truncado debido a un salto de fase. Adicionalmente, se han encontrado tres reguladores de tipo LuxR-orphan que no presentan una sintasa LuxI asociada. El efecto potencial de las señales tipo AHL se ha estudiado mediante una estrategia de quorum quenching, la cual interfiere con los sistemas de QS de la bacteria. Esta estrategia está basada en la introducción del gen aiiA de Bacillus subtilis, que expresa constitutivamente una enzima lactonasa degradadora de AHLs. Para llevar a cabo el análisis en condiciones simbióticas, se ha desarrollado un sistema de doble marcaje que permite la identificación basado en los marcadores gusA y celB, que codifican para una enzima β–glucuronidasa y una β–galactosidasa termoestable, respectivamente. Los resultados obtenidos indican que Rlv UPM791 predomina sobre la cepa Rlv 3841 para la formación de nódulos en plantas de guisante. La baja estabilidad del plásmido que codifica para aiiA, no ha permitido obtener una conclusión definitiva sobre el efecto de la lactonasa AiiA en competitividad. Con el fin de analizar el significado y la regulación de la producción de moléculas señal tipo AHL, se han generado mutantes defectivos en cada uno de los dos sistemas de QS. Se ha llevado a cabo un análisis detallado sobre la producción de AHLs, formación de biofilm y simbiosis con plantas de guisante, veza y lenteja. El efecto de las deleciones de los genes rhiI y rhiR en Rlv UPM791 es más drástico en ausencia del plásmido pUPM791d. Mutaciones en cinI o cinRIS muestran tanto ausencia de señales, como producción exclusivamente de las de bajo peso molecular, respectivamente, producidas por el sistema rhiRI. Estas mutaciones mostraron un efecto importante en simbiosis. El sistema rhiRI se necesita para un comportamiento simbiótico normal. Además, mutantes cinRIS generaron nódulos blancos e ineficientes, mientras que el mutante cinI fue incapaz de producir nódulos en ninguna de las leguminosas utilizadas. Dicha mutación resultó en la inestabilización del plasmido simbiótico por un mecanismo dependiente de cinI que no ha sido aclarado. En general, los resultados obtenidos indican la existencia de un modelo de regulación dependiente de QS significativamente distinto a los que se han descrito previamente en otras cepas de R. leguminosarum, en las cuales no se había observado ningún fenotipo relevante en simbiosis. La regulación de la producción de AHLs Rlv UPM791 es un proceso complejo que implica genes situados en los plásmidos UPM791c y UPM791d, además de la señal 3-OH-C14:1-HSL. Finalmente, se ha identificado un transportador de tipo RND, homologo a mexAB-oprM de P. aeruginosa e implicado en la extrusión de AHLs de cadena larga. La mutación he dicho transportador no tuvo efectos apreciables sobre la simbiosis. ABSTRACT Rhizobium leguminosarum (Rl) is a soil alpha-proteobacterium that establishes a diazotrophic symbiosis with different legumes. Despite the importance of this symbiosis to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far which provide new insights into the genetic features contributing to symbiotically relevant processes. Only three complete sequences of Rl strains have been published: Rl bv. viciae 3841, harboring six plasmids (7.75 Mb) and two Rl bv. trifolii (WSM1325 and WSM2304), both clover symbionts, harboring 5 and 4 plasmids, respectively (7.41 and 6.87 Mb). The genomic sequence of Rlv UPM791 was undertaken by means of 454 sequencing. Illumina and Sanger reads were used to improve the assembly, leading to 17 final contigs. This genome has an estimated size of 7.8 Mb organized in one chromosome and five extrachromosomal replicons, including a 405 kb symbiotic plasmid. Four of these plasmids are already closed, whereas there are still gaps in the smallest one (pUPM791d) due to the presence of insertion elements and repeated sequences, which difficult the assembly. The annotation has been carried out thanks to the Manatee pipeline. This new genome has been analyzed as regarding symbiotic and adaptive functions in comparison to the Rlv 3841 complete genome, and to those from Rl bv. trifolii strains WSM1325 and WSM2304. While plasmids pUPM791a and b are conserved, the symbiotic plasmid pUPM791c exhibited the lowest degree of conservation as compared to those from the other Rl strains. One of the factors involved in the symbiotic process is the intercellular communication system known as Quorum Sensing (QS). This mechanism allows bacteria to carry out diverse biological processes in a coordinate way through the production and detection of extracellular signals that regulate the transcription of different target genes. Analysis of the Rlv UPM791 genome allowed the identification of two LuxRI-like systems mediated by N-acyl-homoserine lactones (AHLs). HPLC-MS analysis allowed the adscription of C6-HSL, C7-HSL and C8-HSL signals to the rhiRI system, encoded in the symbiotic plasmid, whereas the cinRI system, located in the chromosome, produces 3OH-C14:1-HSL, previously described as “bacteriocin small”. A third synthase (TraI) is encoded also in the symbiotic plasmid, but its cognate regulator TraR is not functional due to a fameshift mutation. Three additional LuxR orphans were also found which no associated LuxI-type synthase. The potential effect of AHLs has been studied by means of a quorum quenching approach to interfere with the QS systems of the bacteria. This approach is based upon the introduction into the strains Rl UPM791 and Rl 3841 of the Bacillus subtilis gene aiiA expressing constitutively an AHL-degrading lactonase enzyme which led to virtual absence of AHL even when AiiA-expressing cells were a fraction of the total population. No significant effect of AiiA-mediated AHL removal on competitiveness for growth in solid surface was observed. For analysis under symbiotic conditions we have set up a two-label system to identify nodules produced by two different strains in pea roots, based on the markers gusA and celB, encoding a β–glucuronidase and a thermostable β–galactosidase enzymes, respectively. The results obtained show that Rlv UPM791 outcompetes Rlv 3841 for nodule formation in pea plants, and that the presence of the AiiA plasmid does not significantly affect the relative competitiveness of the two Rlv strains. However, the low stability of the pME6863 plasmid, encoding aiiA, did not lead to a clear conclusion about the AiiA lactonase effect on competitiveness. In order to further analyze the significance and regulation of the production of AHL signal molecules, mutants deficient in each of the two QS systems were constructed. A detailed analysis of the effect of these mutations on AHL production, biofilm formation and symbiosis with pea, vetch and lentil plants has been carried out. The effect of deletions on Rlv UPM791 rhiI and rhiR genes is more pronounced in the absence of plasmid pUPM791d, as no signal is detected in UPM791.1, lacking this plasmid. Mutations in cinI or cinRIS show either no signals, or only the small ones produced by the rhiRI system, suggesting that cinR might be regulating the rhiRI system. These mutations had a strong effect on symbiosis. Analysis of rhi mutants revealed that rhiRI system is required for normal symbiotic performance, as a drastic reduction of symbiotic fitness is observed when rhiI is deleted, and rhiR is essential for nitrogen fixation in the absence of plasmid pUPM791d. Furthermore, cinRIS mutants resulted in white and inefficient nodules, whereas cinI mutant was unable to form nodules on any legume tested. The latter mutation is associated to the instabilization of the symbiotic plasmid through a mechanism still uncovered. Overall, the results obtained indicate the existence of a model of QS-dependent regulation significantly different to that previously described in other R. leguminosarum strains, where no relevant symbiotic phenotype had been observed. The regulation of AHL production in Rlv UPM791 is a complex process involving the symbiotic plasmid (pUPM791c) and the smallest plasmid (pUPM791d), with a key role for the 3-OH-C14:1-HSL signal. Finally, we made a search for potential AHL transporters in Rlv UPM791 genome. These signals diffuse freely across membranes, but in the case of the long-chain AHLs an active efflux system might be required, as it has been described for C12-HSL in the case of Pseudomonas aeruginosa. We have identified a putative AHL transporter of the RND family homologous to P. aeruginosa mexAB-oprM. A mutant strain deficient in this transporter has been generated, and TLC analysis shows absence of 3OH-C14:1-HSL in its supernatant. This deficiency was complemented by the reintroduction of an intact copy of the genes via plasmid transfer. The mutation in mexAB genes had no significant effects on the symbiotic performance of R. leguminosarum bv. viciae.
Resumo:
Paramount to symbiotic nitrogen fixation (SNF) is the synthesis of a number of metalloenzymes that use iron as a critical component of their catalytical core. Since this process is carried out by endosymbiotic rhizobia living in legume root nodules, the mechanisms involved in iron delivery to the rhizobia-containing cells are critical for SNF. In order to gain insight into iron transport to the nodule, we have used synchrotron-based X-ray fluorescence to determine the spatio-temporal distribution of this metal in nodules of the legume Medicago truncatula with hitherto unattained sensitivity and resolution. The data support a model in which iron is released from the vasculature into the apoplast of the infection/differentiation zone of the nodule (zone II). The infected cell subsequently takes up this apoplastic iron and delivers it to the symbiosome and the secretory system to synthesize ferroproteins. Upon senescence, iron is relocated to the vasculature to be reused by the shoot. These observations highlight the important role of yet to be discovered metal transporters in iron compartmentalization in the nodule and in the recovery of an essential and scarce nutrient for flowering and seed production.
Resumo:
Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure–function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al3+ sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure–function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al3+ sensing.
Resumo:
In prokaryotes, nickel is an essential element participating in the structure of enzymes involved in multiple cellular processes. Nickel transport is a challenge for microorganisms since, although essential, high levels of this metal inside the cell are toxic. For this reason, bacteria have developed high-affinity nickel transporters as well as nickel-specific detoxification systems. Ultramafic soils, and soils contaminated with heavy metals are excellent sources of nickel resistant bacteria. Molecular analysis of strains isolated in the habitats has revealed novel genetic systems involved in adaptation to such hostile conditions.
Resumo:
Iron is critical for symbiotic nitrogen fixation (SNF) as a key component ofmultiple ferroproteins involved in this biological process. In the model legume Medicago truncatula, iron is delivered by the vasculature to the infection/maturation zone (zone II) of the nodule, where it is released to the apoplast. From there, plasma membrane iron transporters move it into rhizobia-containing cells, where iron is used as the cofactor of multiple plant and rhizobial proteins (e.g. plant leghemoglobin and bacterial nitrogenase). MtNramp1 (Medtr3g088460) is the M. truncatula Natural Resistance-Associated Macrophage Protein family member, with the highest expression levels in roots and nodules. Immunolocalization studies indicate that MtNramp1 is mainly targeted to the plasma membrane. A loss-of-function nramp1 mutant exhibited reduced growth compared with the wild type under symbiotic conditions, but not when fertilized with mineral nitrogen. Nitrogenase activity was low in the mutant, whereas exogenous iron and expression of wild-type MtNramp1 in mutant nodules increased nitrogen fixation to normal levels. These data are consistent with a model in which MtNramp1 is the main transporter responsible for apoplastic iron uptake by rhizobia-infected cells in zone II.
Resumo:
Bacteria require nickel transporters for the synthesis of Ni-containing metalloenzymes in natural, low nickel habitats. In this work we carry out functional and topological characterization of Rhizobium leguminosarum HupE, a nickel permease required for the provision of this element for [NiFe] hydrogenase synthesis. Expression studies in the Escherichia coli nikABCDE mutant strain HYD723 revealed that HupE is a medium-affinity permease (apparent Km 227 ! 21 nM; Vmax 49 ! 21 pmol Ni2+ min"1 mg"1 bacterial dry weight) that functions as an energy-independent diffusion facilitator for the uptake of Ni(II) ions. This Ni2+ transport is not inhibited by similar cations such as Mn2+, Zn2+, or Co2+, but is blocked by Cu2+. Analysis of site-directed HupE mutants allowed the identification of several residues (H36, D42, H43, F69, E90, H130, and E133) that are essential for HupE-mediated Ni uptake in E. coli cells. By using translational fusions to reporter genes we demonstrated the presence of five transmembrane domains with a periplasmic N-terminal domain and a C-terminal domain buried in the lipid bilayer. The periplasmic N-terminal domain contributes to stability and functionality of the protein