3 resultados para tooling

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La óptica anidólica es una rama de la óptica cuyo desarrollo comenzó a mediados de la década de 1960. Este relativamente nuevo campo de la óptica se centra en la transferencia eficiente de la luz, algo necesario en muchas aplicaciones, entre las que destacamos los concentradores solares y los sistemas de iluminación. Las soluciones de la óptica clásica a los problemas de la transferencia de energía de la luz sólo son adecuadas cuando los rayos de luz son paraxiales. La condición paraxial no se cumple en la mayoría de las aplicaciones para concentración e iluminación. Esta tesis contiene varios diseños free-form (aquellos que no presentan ninguna simetría, ni de rotación ni lineal) cuyas aplicaciones van destinadas a estos dos campos. El término nonimaging viene del hecho de que estos sistemas ópticos no necesitan formar una imagen del objeto, aunque no formar la imagen no es una condición necesaria. Otra palabra que se utiliza a veces en lugar de nonimaging es la palabra anidólico, viene del griego "an+eidolon" y tiene el mismo significado. La mayoría de los sistemas ópticos diseñados para aplicaciones anidólicas no presentan ninguna simetría, es decir, son free-form (anamórficos). Los sistemas ópticos free-form están siendo especialmente relevantes durante los últimos años gracias al desarrollo de las herramientas para su fabricación como máquinas de moldeo por inyección y el mecanizado multieje. Sin embargo, solo recientemente se han desarrollado técnicas de diseño anidólicas capaces de cumplir con estos grados de libertad. En aplicaciones de iluminación el método SMS3D permite diseñar dos superficies free-form para controlar las fuentes de luz extensas. En los casos en que se requiere una elevada asimetría de la fuente, el objeto o las restricciones volumétricos, las superficies free-form permiten obtener soluciones de mayor eficiencia, o disponer de menos elementos en comparación con las soluciones de simetría de rotación, dado que las superficies free-form tienen más grados de libertad y pueden realizar múltiples funciones debido a su naturaleza anamórfica. Los concentradores anidólicos son muy adecuados para la captación de energía solar, ya que el objetivo no es la reproducción de una imagen exacta del sol, sino sencillamente la captura de su energía. En este momento, el campo de la concentración fotovoltaica (CPV) tiende hacia sistemas de alta concentración con el fin de compensar el gasto de las células solares multi-unión (MJ) utilizadas como receptores, reduciendo su área. El interés en el uso de células MJ radica en su alta eficiencia de conversión. Para obtener sistemas competitivos en aplicaciones terrestres se recurre a sistemas fotovoltaicos de alta concentración (HCPV), con factores de concentración geométrica por encima de 500x. Estos sistemas se componen de dos (o más) elementos ópticos (espejos y/o lentes). En los sistemas presentados a lo largo de este trabajo se presentan ejemplos de concentradores HCPV con elementos reflexivos como etapa primaria, así como concentradores con elementos refractivos (lente de Fresnel). Con la necesidad de aumentar la eficiencia de los sistemas HCPV reales y con el fin de proporcionar la división más eficiente del espectro solar, células conteniendo cuatro o más uniones (con un potencial de alcanzar eficiencias de más del 45% a una concentración de cientos de soles) se exploran hoy en día. En esta tesis se presenta una de las posibles arquitecturas de división del espectro (spectrum-splitting en la literatura anglosajona) que utilizan células de concentración comercial. Otro campo de aplicación de la óptica nonimaging es la iluminación, donde es necesario proporcionar un patrón de distribución de la iluminación específico. La iluminación de estado sólido (SSL), basada en la electroluminiscencia de materiales semiconductores, está proporcionando fuentes de luz para aplicaciones de iluminación general. En la última década, los diodos emisores de luz (LED) de alto brillo han comenzado a reemplazar a las fuentes de luz convencionales debido a la superioridad en la calidad de la luz emitida, elevado tiempo de vida, compacidad y ahorro de energía. Los colimadores utilizados con LEDs deben cumplir con requisitos tales como tener una alta eficiencia, un alto control del haz de luz, una mezcla de color espacial y una gran compacidad. Presentamos un colimador de luz free-form con microestructuras capaz de conseguir buena colimación y buena mezcla de colores con una fuente de LED RGGB. Una buena mezcla de luz es importante no sólo para simplificar el diseño óptico de la luminaria sino también para evitar hacer binning de los chips. La mezcla de luz óptica puede reducir los costes al evitar la modulación por ancho de pulso y otras soluciones electrónicas patentadas para regulación y ajuste de color. Esta tesis consta de cuatro capítulos. Los capítulos que contienen la obra original de esta tesis son precedidos por un capítulo introductorio donde se presentan los conceptos y definiciones básicas de la óptica geométrica y en el cual se engloba la óptica nonimaging. Contiene principios de la óptica no formadora de imagen junto con la descripción de sus problemas y métodos de diseño. Asimismo se describe el método de Superficies Múltiples Simultáneas (SMS), que destaca por su versatilidad y capacidad de controlar varios haces de rayos. Adicionalmente también se describe la integración Köhler y sus aplicaciones en el campo de la energía fotovoltaica. La concentración fotovoltaica y la iluminación de estado sólido son introducidas junto con la revisión de su estado actual. El Segundo y Tercer Capítulo contienen diseños ópticos avanzados con aplicación en la concentración solar principalmente, mientras que el Cuarto Capítulo describe el colimador free-form con surcos que presenta buena mezcla de colores para aplicaciones de iluminación. El Segundo Capítulo describe dos concentradores ópticos HCPV diseñados con el método SMS en tres dimensiones (SMS3D) que llevan a cabo integración Köhler en dos direcciones con el fin de proporcionar una distribución de irradiancia uniforme libre de aberraciones cromáticas sobre la célula solar. Uno de los diseños es el concentrador XXR free-form diseñado con el método SMS3D, donde el espejo primario (X) y la lente secundaria (R) se dividen en cuatro sectores simétricos y llevan a cabo la integración Köhler (proporcionando cuatro unidades del array Köhler), mientras que el espejo intermedio (X) presenta simetría rotacional. Otro concentrador HCPV presentado es el Fresnel-RXI (FRXI) con una lente de Fresnel funcionando como elemento primario (POE) y una lente RXI como elemento óptico secundario (SOE), que presenta configuración 4-fold con el fin de realizar la integración Köhler. Las lentes RXI son dispositivos nonimaging conocidos, pero su aplicación como elemento secundario es novedosa. Los concentradores XXR y FRXI Köhler son ejemplos académicos de muy alta concentración (más de 2,000x, mientras que los sistemas convencionales hoy en día no suelen llegar a 1,000x) preparados para las células solares N-unión (con N>3), que probablemente requerirán una mayor concentración y alta uniformidad espectral de irradiancia con el fin de obtener sistemas CPV terrestres eficientes y rentables. Ambos concentradores están diseñados maximizando funciones de mérito como la eficiencia óptica, el producto concentración-aceptancia (CAP) y la uniformidad de irradiancia sobre la célula libre de la aberración cromática (integración Köhler). El Tercer Capítulo presenta una arquitectura para la división del espectro solar basada en un módulo HCPV con alta concentración (500x) y ángulo de aceptancia alto (>1º) que tiene por objeto reducir ambas fuentes de pérdidas de las células triple unión (3J) comerciales: el uso eficiente del espectro solar y la luz reflejada de los contactos metálicos y de la superficie de semiconductor. El módulo para la división del espectro utiliza el espectro solar más eficiente debido a la combinación de una alta eficiencia de una célula de concentración 3J (GaInP/GaInAs/Ge) y una de contacto posterior (BPC) de concentración de silicio (Si), así como la técnica de confinamiento externo para la recuperación de la luz reflejada por la célula 3J con el fin de ser reabsorbida por la célula. En la arquitectura propuesta, la célula 3J opera con su ganancia de corriente optimizada (concentración geométrica de 500x), mientras que la célula de silicio trabaja cerca de su óptimo también (135x). El módulo de spectrum-splitting consta de una lente de Fresnel plana como POE y un concentrador RXI free-form como SOE con un filtro paso-banda integrado en él. Tanto POE como SOE realizan la integración Köhler para producir homogeneización de luz sobre la célula. El filtro paso banda envía los fotones IR en la banda 900-1,150nm a la célula de silicio. Hay varios aspectos prácticos de la arquitectura del módulo presentado que ayudan a reducir la complejidad de los sistemas spectrum-splitting (el filtro y el secundario forman una sola pieza sólida, ambas células son coplanarias simplificándose el cableado y la disipación de calor, etc.). Prototipos prueba-de-concepto han sido ensamblados y probados a fin de demostrar la fabricabilidad del filtro y su rendimiento cuando se combina con la técnica de reciclaje de luz externa. Los resultados obtenidos se ajustan bastante bien a los modelos y a las simulaciones e invitan al desarrollo de una versión más compleja de este prototipo en el futuro. Dos colimadores sólidos con surcos free-form se presentan en el Cuarto Capítulo. Ambos diseños ópticos están diseñados originalmente usando el método SMS3D. La segunda superficie ópticamente activa está diseñada a posteriori como una superficie con surcos. El diseño inicial de dos espejos (XX) está diseñado como prueba de concepto. En segundo lugar, el diseño RXI free-form es comparable con los colimadores RXI existentes. Se trata de un diseño muy compacto y eficiente que proporciona una muy buena mezcla de colores cuando funciona con LEDs RGB fuera del eje óptico como en los RGB LEDs convencionales. Estos dos diseños son dispositivos free-form diseñados con la intención de mejorar las propiedades de mezcla de colores de los dispositivos no aplanáticos RXI con simetría de revolución y la eficiencia de los aplanáticos, logrando una buena colimación y una buena mezcla de colores. La capacidad de mezcla de colores del dispositivo no-aplanático mejora añadiendo características de un aplanático a su homólogo simétrico sin pérdida de eficiencia. En el caso del diseño basado en RXI, su gran ventaja consiste en su menor coste de fabricación ya que el proceso de metalización puede evitarse. Aunque algunos de los componentes presentan formas muy complejas, los costes de fabricación son relativamente insensibles a la complejidad del molde, especialmente en el caso de la producción en masa (tales como inyección de plástico), ya que el coste del molde se reparte entre todas las piezas fabricadas. Por último, las últimas dos secciones son las conclusiones y futuras líneas de investigación. ABSTRACT Nonimaging optics is a branch of optics whose development began in the mid-1960s. This rather new field of optics focuses on the efficient light transfer necessary in many applications, among which we highlight solar concentrators and illumination systems. The classical optics solutions to the problems of light energy transfer are only appropriate when the light rays are paraxial. The paraxial condition is not met in most applications for the concentration and illumination. This thesis explores several free-form designs (with neither rotational nor linear symmetry) whose applications are intended to cover the above mentioned areas and more. The term nonimaging comes from the fact that these optical systems do not need to form an image of the object, although it is not a necessary condition not to form an image. Another word sometimes used instead of nonimaging is anidolic, and it comes from the Greek “an+eidolon” and has the same meaning. Most of the optical systems designed for nonimaging applications are without any symmetry, i.e. free-form. Free-form optical systems become especially relevant lately with the evolution of free-form tooling (injection molding machines, multi-axis machining techniques, etc.). Nevertheless, only recently there are nonimaging design techniques that are able to meet these degrees of freedom. In illumination applications, the SMS3D method allows designing two free-form surfaces to control very well extended sources. In cases when source, target or volumetric constrains have very asymmetric requirements free-form surfaces are offering solutions with higher efficiency or with fewer elements in comparison with rotationally symmetric solutions, as free-forms have more degrees of freedom and they can perform multiple functions due to their free-form nature. Anidolic concentrators are well suited for the collection of solar energy, because the goal is not the reproduction of an exact image of the sun, but instead the collection of its energy. At this time, Concentration Photovoltaics (CPV) field is turning to high concentration systems in order to compensate the expense of multi-junction (MJ) solar cells used as receivers by reducing its area. Interest in the use of MJ cells lies in their very high conversion efficiency. High Concentration Photovoltaic systems (HCPV) with geometric concentration of more than 500x are required in order to have competitive systems in terrestrial applications. These systems comprise two (or more) optical elements, mirrors and/or lenses. Systems presented in this thesis encompass both main types of HCPV architectures: concentrators with primary reflective element and concentrators with primary refractive element (Fresnel lens). Demand for the efficiency increase of the actual HCPV systems as well as feasible more efficient partitioning of the solar spectrum, leads to exploration of four or more junction solar cells or submodules. They have a potential of reaching over 45% efficiency at concentration of hundreds of suns. One possible architectures of spectrum splitting module using commercial concentration cells is presented in this thesis. Another field of application of nonimaging optics is illumination, where a specific illuminance distribution pattern is required. The Solid State Lighting (SSL) based on semiconductor electroluminescence provides light sources for general illumination applications. In the last decade high-brightness Light Emitting Diodes (LEDs) started replacing conventional light sources due to their superior output light quality, unsurpassed lifetime, compactness and energy savings. Collimators used with LEDs have to meet requirements like high efficiency, high beam control, color and position mixing, as well as a high compactness. We present a free-form collimator with microstructures that performs good collimation and good color mixing with RGGB LED source. Good light mixing is important not only for simplifying luminaire optical design but also for avoiding die binning. Optical light mixing may reduce costs by avoiding pulse-width modulation and other patented electronic solutions for dimming and color tuning. This thesis comprises four chapters. Chapters containing the original work of this thesis are preceded by the introductory chapter that addresses basic concepts and definitions of geometrical optics on which nonimaging is developed. It contains fundamentals of nonimaging optics together with the description of its design problems, principles and methods, and with the Simultaneous Multiple Surface (SMS) method standing out for its versatility and ability to control several bundles of rays. Köhler integration and its applications in the field of photovoltaics are described as well. CPV and SSL fields are introduced together with the review on their background and their current status. Chapter 2 and Chapter 3 contain advanced optical designs with primarily application in solar concentration; meanwhile Chapter 4 portrays the free-form V-groove collimator with good color mixing property for illumination application. Chapter 2 describes two HCPV optical concentrators designed with the SMS method in three dimensions (SMS3D). Both concentrators represent Köhler integrator arrays that provide uniform irradiance distribution free from chromatic aberrations on the solar cell. One of the systems is the XXR free-form concentrator designed with the SMS3D method. The primary mirror (X) of this concentrator and secondary lens (R) are divided in four symmetric sectors (folds) that perform Köhler integration; meanwhile the intermediate mirror (X) is rotationally symmetric. Second HCPV concentrator is the Fresnel-RXI (FRXI) with flat Fresnel lens as the Primary Optical Element (POE) and an RXI lens as the Secondary Optical Element (SOE). This architecture manifests 4-fold configuration for performing Köhler integration (4 array units), as well. The RXI lenses are well-known nonimaging devices, but their application as SOE is novel. Both XXR and FRXI Köhler HCPV concentrators are academic examples of very high concentration (more than 2,000x meanwhile conventional systems nowadays have up to 1,000x) prepared for the near future N-junction (N>3) solar cells. In order to have efficient and cost-effective terrestrial CPV systems, those cells will probably require higher concentrations and high spectral irradiance uniformity. Both concentrators are designed by maximizing merit functions: the optical efficiency, concentration-acceptance angle (CAP) and cell-irradiance uniformity free from chromatic aberrations (Köhler integration). Chapter 3 presents the spectrum splitting architecture based on a HCPV module with high concentration (500x) and high acceptance angle (>1º). This module aims to reduce both sources of losses of the actual commercial triple-junction (3J) solar cells with more efficient use of the solar spectrum and with recovering the light reflected from the 3J cells’ grid lines and semiconductor surface. The solar spectrum is used more efficiently due to the combination of a high efficiency 3J concentration cell (GaInP/GaInAs/Ge) and external Back-Point-Contact (BPC) concentration silicon (Si) cell. By employing external confinement techniques, the 3J cell’s reflections are recovered in order to be re-absorbed by the cell. In the proposed concentrator architecture, the 3J cell operates at its optimized current gain (at geometrical concentration of 500x), while the Si cell works near its optimum, as well (135x). The spectrum splitting module consists of a flat Fresnel lens (as the POE), and a free-form RXI-type concentrator with a band-pass filter embedded in it (as the SOE), both POE and SOE performing Köhler integration to produce light homogenization. The band-pass filter sends the IR photons in the 900-1,150nm band to the Si cell. There are several practical aspects of presented module architecture that help reducing the added complexity of the beam splitting systems: the filter and secondary are forming a single solid piece, both cells are coplanar so the heat management and wiring is simplified, etc. Two proof-of-concept prototypes are assembled and tested in order to prove filter manufacturability and performance, as well as the potential of external light recycling technique. Obtained measurement results agree quite well with models and simulations, and show an opened path to manufacturing of the Fresnel RXI-type secondary concentrator with spectrum splitting strategy. Two free-form solid V-groove collimators are presented in Chapter 4. Both free-form collimators are originally designed with the SMS3D method. The second mirrored optically active surface is converted in a grooved surface a posteriori. Initial two mirror (XX) design is presented as a proof-of-concept. Second, RXI free-form design is comparable with existing RXI collimators as it is a highly compact and a highly efficient design. It performs very good color mixing of the RGGB LED sources placed off-axis like in conventional RGB LEDs. Collimators described here improve color mixing property of the prior art rotationally symmetric no-aplanatic RXI devices, and the efficiency of the aplanatic ones, accomplishing both good collimation and good color mixing. Free-form V-groove collimators enhance the no-aplanatic device's blending capabilities by adding aplanatic features to its symmetric counterpart with no loss in efficiency. Big advantage of the RXI design is its potentially lower manufacturing cost, since the process of metallization may be avoided. Although some components are very complicated for shaping, the manufacturing costs are relatively insensitive to the complexity of the mold especially in the case of mass production (such as plastic injection), as the cost of the mold is spread in many parts. Finally, last two sections are conclusions and future lines of investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed criticality systems emerges as a suitable solution for dealing with the complexity, performance and costs of future embedded and dependable systems. However, this paradigm adds additional complexity to their development. This paper proposes an approach for dealing with this scenario that relies on hardware virtualization and Model-Driven Engineering (MDE). Hardware virtualization ensures isolation between subsystems with different criticality levels. MDE is intended to bridge the gap between design issues and partitioning concerns. MDE tooling will enhance the functional models by annotating partitioning and extra-functional properties. System partitioning and subsystems allocation will be generated with a high degree of automation. System configuration will be validated for ensuring that the resources assigned to a partition are sufficient for executing the allocated software components and that time requirements are met.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente Trabajo fin Fin de Máster, versa sobre una caracterización preliminar del comportamiento de un robot de tipo industrial, configurado por 4 eslabones y 4 grados de libertad, y sometido a fuerzas de mecanizado en su extremo. El entorno de trabajo planteado es el de plantas de fabricación de piezas de aleaciones de aluminio para automoción. Este tipo de componentes parte de un primer proceso de fundición que saca la pieza en bruto. Para series medias y altas, en función de las propiedades mecánicas y plásticas requeridas y los costes de producción, la inyección a alta presión (HPDC) y la fundición a baja presión (LPC) son las dos tecnologías más usadas en esta primera fase. Para inyección a alta presión, las aleaciones de aluminio más empleadas son, en designación simbólica según norma EN 1706 (entre paréntesis su designación numérica); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). Para baja presión, EN AC AlSi7Mg0,3 (EN AC 42100). En los 3 primeros casos, los límites de Silicio permitidos pueden superan el 10%. En el cuarto caso, es inferior al 10% por lo que, a los efectos de ser sometidas a mecanizados, las piezas fabricadas en aleaciones con Si superior al 10%, se puede considerar que son equivalentes, diferenciándolas de la cuarta. Las tolerancias geométricas y dimensionales conseguibles directamente de fundición, recogidas en normas como ISO 8062 o DIN 1688-1, establecen límites para este proceso. Fuera de esos límites, las garantías en conseguir producciones con los objetivos de ppms aceptados en la actualidad por el mercado, obligan a ir a fases posteriores de mecanizado. Aquellas geometrías que, funcionalmente, necesitan disponer de unas tolerancias geométricas y/o dimensionales definidas acorde a ISO 1101, y no capaces por este proceso inicial de moldeado a presión, deben ser procesadas en una fase posterior en células de mecanizado. En este caso, las tolerancias alcanzables para procesos de arranque de viruta se recogen en normas como ISO 2768. Las células de mecanizado se componen, por lo general, de varios centros de control numérico interrelacionados y comunicados entre sí por robots que manipulan las piezas en proceso de uno a otro. Dichos robots, disponen en su extremo de una pinza utillada para poder coger y soltar las piezas en los útiles de mecanizado, las mesas de intercambio para cambiar la pieza de posición o en utillajes de equipos de medición y prueba, o en cintas de entrada o salida. La repetibilidad es alta, de centésimas incluso, definida según norma ISO 9283. El problema es que, estos rangos de repetibilidad sólo se garantizan si no se hacen esfuerzos o éstos son despreciables (caso de mover piezas). Aunque las inercias de mover piezas a altas velocidades hacen que la trayectoria intermedia tenga poca precisión, al inicio y al final (al coger y dejar pieza, p.e.) se hacen a velocidades relativamente bajas que hacen que el efecto de las fuerzas de inercia sean menores y que permiten garantizar la repetibilidad anteriormente indicada. No ocurre así si se quitara la garra y se intercambia con un cabezal motorizado con una herramienta como broca, mandrino, plato de cuchillas, fresas frontales o tangenciales… Las fuerzas ejercidas de mecanizado generarían unos pares en las uniones tan grandes y tan variables que el control del robot no sería capaz de responder (o no está preparado, en un principio) y generaría una desviación en la trayectoria, realizada a baja velocidad, que desencadenaría en un error de posición (ver norma ISO 5458) no asumible para la funcionalidad deseada. Se podría llegar al caso de que la tolerancia alcanzada por un pretendido proceso más exacto diera una dimensión peor que la que daría el proceso de fundición, en principio con mayor variabilidad dimensional en proceso (y por ende con mayor intervalo de tolerancia garantizable). De hecho, en los CNCs, la precisión es muy elevada, (pudiéndose despreciar en la mayoría de los casos) y no es la responsable de, por ejemplo la tolerancia de posición al taladrar un agujero. Factores como, temperatura de la sala y de la pieza, calidad constructiva de los utillajes y rigidez en el amarre, error en el giro de mesas y de colocación de pieza, si lleva agujeros previos o no, si la herramienta está bien equilibrada y el cono es el adecuado para el tipo de mecanizado… influyen más. Es interesante que, un elemento no específico tan común en una planta industrial, en el entorno anteriormente descrito, como es un robot, el cual no sería necesario añadir por disponer de él ya (y por lo tanto la inversión sería muy pequeña), puede mejorar la cadena de valor disminuyendo el costo de fabricación. Y si se pudiera conjugar que ese robot destinado a tareas de manipulación, en los muchos tiempos de espera que va a disfrutar mientras el CNC arranca viruta, pudiese coger un cabezal y apoyar ese mecanizado; sería doblemente interesante. Por lo tanto, se antoja sugestivo poder conocer su comportamiento e intentar explicar qué sería necesario para llevar esto a cabo, motivo de este trabajo. La arquitectura de robot seleccionada es de tipo SCARA. La búsqueda de un robot cómodo de modelar y de analizar cinemática y dinámicamente, sin limitaciones relevantes en la multifuncionalidad de trabajos solicitados, ha llevado a esta elección, frente a otras arquitecturas como por ejemplo los robots antropomórficos de 6 grados de libertad, muy populares a nivel industrial. Este robot dispone de 3 uniones, de las cuales 2 son de tipo par de revolución (1 grado de libertad cada una) y la tercera es de tipo corredera o par cilíndrico (2 grados de libertad). La primera unión, de tipo par de revolución, sirve para unir el suelo (considerado como eslabón número 1) con el eslabón número 2. La segunda unión, también de ese tipo, une el eslabón número 2 con el eslabón número 3. Estos 2 brazos, pueden describir un movimiento horizontal, en el plano X-Y. El tercer eslabón, está unido al eslabón número 4 por la unión de tipo corredera. El movimiento que puede describir es paralelo al eje Z. El robot es de 4 grados de libertad (4 motores). En relación a los posibles trabajos que puede realizar este tipo de robot, su versatilidad abarca tanto operaciones típicas de manipulación como operaciones de arranque de viruta. Uno de los mecanizados más usuales es el taladrado, por lo cual se elige éste para su modelización y análisis. Dentro del taladrado se elegirá para acotar las fuerzas, taladrado en macizo con broca de diámetro 9 mm. El robot se ha considerado por el momento que tenga comportamiento de sólido rígido, por ser el mayor efecto esperado el de los pares en las uniones. Para modelar el robot se utiliza el método de los sistemas multicuerpos. Dentro de este método existen diversos tipos de formulaciones (p.e. Denavit-Hartenberg). D-H genera una cantidad muy grande de ecuaciones e incógnitas. Esas incógnitas son de difícil comprensión y, para cada posición, hay que detenerse a pensar qué significado tienen. Se ha optado por la formulación de coordenadas naturales. Este sistema utiliza puntos y vectores unitarios para definir la posición de los distintos cuerpos, y permite compartir, cuando es posible y se quiere, para definir los pares cinemáticos y reducir al mismo tiempo el número de variables. Las incógnitas son intuitivas, las ecuaciones de restricción muy sencillas y se reduce considerablemente el número de ecuaciones e incógnitas. Sin embargo, las coordenadas naturales “puras” tienen 2 problemas. El primero, que 2 elementos con un ángulo de 0 o 180 grados, dan lugar a puntos singulares que pueden crear problemas en las ecuaciones de restricción y por lo tanto han de evitarse. El segundo, que tampoco inciden directamente sobre la definición o el origen de los movimientos. Por lo tanto, es muy conveniente complementar esta formulación con ángulos y distancias (coordenadas relativas). Esto da lugar a las coordenadas naturales mixtas, que es la formulación final elegida para este TFM. Las coordenadas naturales mixtas no tienen el problema de los puntos singulares. Y la ventaja más importante reside en su utilidad a la hora de aplicar fuerzas motrices, momentos o evaluar errores. Al incidir sobre la incógnita origen (ángulos o distancias) controla los motores de manera directa. El algoritmo, la simulación y la obtención de resultados se ha programado mediante Matlab. Para realizar el modelo en coordenadas naturales mixtas, es preciso modelar en 2 pasos el robot a estudio. El primer modelo se basa en coordenadas naturales. Para su validación, se plantea una trayectoria definida y se analiza cinemáticamente si el robot satisface el movimiento solicitado, manteniendo su integridad como sistema multicuerpo. Se cuantifican los puntos (en este caso inicial y final) que configuran el robot. Al tratarse de sólidos rígidos, cada eslabón queda definido por sus respectivos puntos inicial y final (que son los más interesantes para la cinemática y la dinámica) y por un vector unitario no colineal a esos 2 puntos. Los vectores unitarios se colocan en los lugares en los que se tenga un eje de rotación o cuando se desee obtener información de un ángulo. No son necesarios vectores unitarios para medir distancias. Tampoco tienen por qué coincidir los grados de libertad con el número de vectores unitarios. Las longitudes de cada eslabón quedan definidas como constantes geométricas. Se establecen las restricciones que definen la naturaleza del robot y las relaciones entre los diferentes elementos y su entorno. La trayectoria se genera por una nube de puntos continua, definidos en coordenadas independientes. Cada conjunto de coordenadas independientes define, en un instante concreto, una posición y postura de robot determinada. Para conocerla, es necesario saber qué coordenadas dependientes hay en ese instante, y se obtienen resolviendo por el método de Newton-Rhapson las ecuaciones de restricción en función de las coordenadas independientes. El motivo de hacerlo así es porque las coordenadas dependientes deben satisfacer las restricciones, cosa que no ocurre con las coordenadas independientes. Cuando la validez del modelo se ha probado (primera validación), se pasa al modelo 2. El modelo número 2, incorpora a las coordenadas naturales del modelo número 1, las coordenadas relativas en forma de ángulos en los pares de revolución (3 ángulos; ϕ1, ϕ 2 y ϕ3) y distancias en los pares prismáticos (1 distancia; s). Estas coordenadas relativas pasan a ser las nuevas coordenadas independientes (sustituyendo a las coordenadas independientes cartesianas del modelo primero, que eran coordenadas naturales). Es necesario revisar si el sistema de vectores unitarios del modelo 1 es suficiente o no. Para este caso concreto, se han necesitado añadir 1 vector unitario adicional con objeto de que los ángulos queden perfectamente determinados con las correspondientes ecuaciones de producto escalar y/o vectorial. Las restricciones habrán de ser incrementadas en, al menos, 4 ecuaciones; una por cada nueva incógnita. La validación del modelo número 2, tiene 2 fases. La primera, al igual que se hizo en el modelo número 1, a través del análisis cinemático del comportamiento con una trayectoria definida. Podrían obtenerse del modelo 2 en este análisis, velocidades y aceleraciones, pero no son necesarios. Tan sólo interesan los movimientos o desplazamientos finitos. Comprobada la coherencia de movimientos (segunda validación), se pasa a analizar cinemáticamente el comportamiento con trayectorias interpoladas. El análisis cinemático con trayectorias interpoladas, trabaja con un número mínimo de 3 puntos máster. En este caso se han elegido 3; punto inicial, punto intermedio y punto final. El número de interpolaciones con el que se actúa es de 50 interpolaciones en cada tramo (cada 2 puntos máster hay un tramo), resultando un total de 100 interpolaciones. El método de interpolación utilizado es el de splines cúbicas con condición de aceleración inicial y final constantes, que genera las coordenadas independientes de los puntos interpolados de cada tramo. Las coordenadas dependientes se obtienen resolviendo las ecuaciones de restricción no lineales con el método de Newton-Rhapson. El método de las splines cúbicas es muy continuo, por lo que si se desea modelar una trayectoria en el que haya al menos 2 movimientos claramente diferenciados, es preciso hacerlo en 2 tramos y unirlos posteriormente. Sería el caso en el que alguno de los motores se desee expresamente que esté parado durante el primer movimiento y otro distinto lo esté durante el segundo movimiento (y así sucesivamente). Obtenido el movimiento, se calculan, también mediante fórmulas de diferenciación numérica, las velocidades y aceleraciones independientes. El proceso es análogo al anteriormente explicado, recordando la condición impuesta de que la aceleración en el instante t= 0 y en instante t= final, se ha tomado como 0. Las velocidades y aceleraciones dependientes se calculan resolviendo las correspondientes derivadas de las ecuaciones de restricción. Se comprueba, de nuevo, en una tercera validación del modelo, la coherencia del movimiento interpolado. La dinámica inversa calcula, para un movimiento definido -conocidas la posición, velocidad y la aceleración en cada instante de tiempo-, y conocidas las fuerzas externas que actúan (por ejemplo el peso); qué fuerzas hay que aplicar en los motores (donde hay control) para que se obtenga el citado movimiento. En la dinámica inversa, cada instante del tiempo es independiente de los demás y tiene una posición, una velocidad y una aceleración y unas fuerzas conocidas. En este caso concreto, se desean aplicar, de momento, sólo las fuerzas debidas al peso, aunque se podrían haber incorporado fuerzas de otra naturaleza si se hubiese deseado. Las posiciones, velocidades y aceleraciones, proceden del cálculo cinemático. El efecto inercial de las fuerzas tenidas en cuenta (el peso) es calculado. Como resultado final del análisis dinámico inverso, se obtienen los pares que han de ejercer los cuatro motores para replicar el movimiento prescrito con las fuerzas que estaban actuando. La cuarta validación del modelo consiste en confirmar que el movimiento obtenido por aplicar los pares obtenidos en la dinámica inversa, coinciden con el obtenido en el análisis cinemático (movimiento teórico). Para ello, es necesario acudir a la dinámica directa. La dinámica directa se encarga de calcular el movimiento del robot, resultante de aplicar unos pares en motores y unas fuerzas en el robot. Por lo tanto, el movimiento real resultante, al no haber cambiado ninguna condición de las obtenidas en la dinámica inversa (pares de motor y fuerzas inerciales debidas al peso de los eslabones) ha de ser el mismo al movimiento teórico. Siendo así, se considera que el robot está listo para trabajar. Si se introduce una fuerza exterior de mecanizado no contemplada en la dinámica inversa y se asigna en los motores los mismos pares resultantes de la resolución del problema dinámico inverso, el movimiento real obtenido no es igual al movimiento teórico. El control de lazo cerrado se basa en ir comparando el movimiento real con el deseado e introducir las correcciones necesarias para minimizar o anular las diferencias. Se aplican ganancias en forma de correcciones en posición y/o velocidad para eliminar esas diferencias. Se evalúa el error de posición como la diferencia, en cada punto, entre el movimiento teórico deseado en el análisis cinemático y el movimiento real obtenido para cada fuerza de mecanizado y una ganancia concreta. Finalmente, se mapea el error de posición obtenido para cada fuerza de mecanizado y las diferentes ganancias previstas, graficando la mejor precisión que puede dar el robot para cada operación que se le requiere, y en qué condiciones. -------------- This Master´s Thesis deals with a preliminary characterization of the behaviour for an industrial robot, configured with 4 elements and 4 degrees of freedoms, and subjected to machining forces at its end. Proposed working conditions are those typical from manufacturing plants with aluminium alloys for automotive industry. This type of components comes from a first casting process that produces rough parts. For medium and high volumes, high pressure die casting (HPDC) and low pressure die casting (LPC) are the most used technologies in this first phase. For high pressure die casting processes, most used aluminium alloys are, in simbolic designation according EN 1706 standard (between brackets, its numerical designation); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). For low pressure, EN AC AlSi7Mg0,3 (EN AC 42100). For the 3 first alloys, Si allowed limits can exceed 10% content. Fourth alloy has admisible limits under 10% Si. That means, from the point of view of machining, that components made of alloys with Si content above 10% can be considered as equivalent, and the fourth one must be studied separately. Geometrical and dimensional tolerances directly achievables from casting, gathered in standards such as ISO 8062 or DIN 1688-1, establish a limit for this process. Out from those limits, guarantees to achieve batches with objetive ppms currently accepted by market, force to go to subsequent machining process. Those geometries that functionally require a geometrical and/or dimensional tolerance defined according ISO 1101, not capable with initial moulding process, must be obtained afterwards in a machining phase with machining cells. In this case, tolerances achievables with cutting processes are gathered in standards such as ISO 2768. In general terms, machining cells contain several CNCs that they are interrelated and connected by robots that handle parts in process among them. Those robots have at their end a gripper in order to take/remove parts in machining fixtures, in interchange tables to modify position of part, in measurement and control tooling devices, or in entrance/exit conveyors. Repeatibility for robot is tight, even few hundredths of mm, defined according ISO 9283. Problem is like this; those repeatibilty ranks are only guaranteed when there are no stresses or they are not significant (f.e. due to only movement of parts). Although inertias due to moving parts at a high speed make that intermediate paths have little accuracy, at the beginning and at the end of trajectories (f.e, when picking part or leaving it) movement is made with very slow speeds that make lower the effect of inertias forces and allow to achieve repeatibility before mentioned. It does not happens the same if gripper is removed and it is exchanged by an spindle with a machining tool such as a drilling tool, a pcd boring tool, a face or a tangential milling cutter… Forces due to machining would create such big and variable torques in joints that control from the robot would not be able to react (or it is not prepared in principle) and would produce a deviation in working trajectory, made at a low speed, that would trigger a position error (see ISO 5458 standard) not assumable for requested function. Then it could be possible that tolerance achieved by a more exact expected process would turn out into a worst dimension than the one that could be achieved with casting process, in principle with a larger dimensional variability in process (and hence with a larger tolerance range reachable). As a matter of fact, accuracy is very tight in CNC, (its influence can be ignored in most cases) and it is not the responsible of, for example position tolerance when drilling a hole. Factors as, room and part temperature, manufacturing quality of machining fixtures, stiffness at clamping system, rotating error in 4th axis and part positioning error, if there are previous holes, if machining tool is properly balanced, if shank is suitable for that machining type… have more influence. It is interesting to know that, a non specific element as common, at a manufacturing plant in the enviroment above described, as a robot (not needed to be added, therefore with an additional minimum investment), can improve value chain decreasing manufacturing costs. And when it would be possible to combine that the robot dedicated to handling works could support CNCs´ works in its many waiting time while CNCs cut, and could take an spindle and help to cut; it would be double interesting. So according to all this, it would be interesting to be able to know its behaviour and try to explain what would be necessary to make this possible, reason of this work. Selected robot architecture is SCARA type. The search for a robot easy to be modeled and kinematically and dinamically analyzed, without significant limits in the multifunctionality of requested operations, has lead to this choice. Due to that, other very popular architectures in the industry, f.e. 6 DOFs anthropomorphic robots, have been discarded. This robot has 3 joints, 2 of them are revolute joints (1 DOF each one) and the third one is a cylindrical joint (2 DOFs). The first joint, a revolute one, is used to join floor (body 1) with body 2. The second one, a revolute joint too, joins body 2 with body 3. These 2 bodies can move horizontally in X-Y plane. Body 3 is linked to body 4 with a cylindrical joint. Movement that can be made is paralell to Z axis. The robt has 4 degrees of freedom (4 motors). Regarding potential works that this type of robot can make, its versatility covers either typical handling operations or cutting operations. One of the most common machinings is to drill. That is the reason why it has been chosen for the model and analysis. Within drilling, in order to enclose spectrum force, a typical solid drilling with 9 mm diameter. The robot is considered, at the moment, to have a behaviour as rigid body, as biggest expected influence is the one due to torques at joints. In order to modelize robot, it is used multibodies system method. There are under this heading different sorts of formulations (f.e. Denavit-Hartenberg). D-H creates a great amount of equations and unknown quantities. Those unknown quatities are of a difficult understanding and, for each position, one must stop to think about which meaning they have. The choice made is therefore one of formulation in natural coordinates. This system uses points and unit vectors to define position of each different elements, and allow to share, when it is possible and wished, to define kinematic torques and reduce number of variables at the same time. Unknown quantities are intuitive, constrain equations are easy and number of equations and variables are strongly reduced. However, “pure” natural coordinates suffer 2 problems. The first one is that 2 elements with an angle of 0° or 180°, give rise to singular positions that can create problems in constrain equations and therefore they must be avoided. The second problem is that they do not work directly over the definition or the origin of movements. Given that, it is highly recommended to complement this formulation with angles and distances (relative coordinates). This leads to mixed natural coordinates, and they are the final formulation chosen for this MTh. Mixed natural coordinates have not the problem of singular positions. And the most important advantage lies in their usefulness when applying driving forces, torques or evaluating errors. As they influence directly over origin variable (angles or distances), they control motors directly. The algorithm, simulation and obtaining of results has been programmed with Matlab. To design the model in mixed natural coordinates, it is necessary to model the robot to be studied in 2 steps. The first model is based in natural coordinates. To validate it, it is raised a defined trajectory and it is kinematically analyzed if robot fulfils requested movement, keeping its integrity as multibody system. The points (in this case starting and ending points) that configure the robot are quantified. As the elements are considered as rigid bodies, each of them is defined by its respectively starting and ending point (those points are the most interesting ones from the point of view of kinematics and dynamics) and by a non-colinear unit vector to those points. Unit vectors are placed where there is a rotating axis or when it is needed information of an angle. Unit vectors are not needed to measure distances. Neither DOFs must coincide with the number of unit vectors. Lengths of each arm are defined as geometrical constants. The constrains that define the nature of the robot and relationships among different elements and its enviroment are set. Path is generated by a cloud of continuous points, defined in independent coordinates. Each group of independent coordinates define, in an specific instant, a defined position and posture for the robot. In order to know it, it is needed to know which dependent coordinates there are in that instant, and they are obtained solving the constraint equations with Newton-Rhapson method according to independent coordinates. The reason to make it like this is because dependent coordinates must meet constraints, and this is not the case with independent coordinates. When suitability of model is checked (first approval), it is given next step to model 2. Model 2 adds to natural coordinates from model 1, the relative coordinates in the shape of angles in revoluting torques (3 angles; ϕ1, ϕ 2 and ϕ3) and distances in prismatic torques (1 distance; s). These relative coordinates become the new independent coordinates (replacing to cartesian independent coordinates from model 1, that they were natural coordinates). It is needed to review if unit vector system from model 1 is enough or not . For this specific case, it was necessary to add 1 additional unit vector to define perfectly angles with their related equations of dot and/or cross product. Constrains must be increased in, at least, 4 equations; one per each new variable. The approval of model 2 has two phases. The first one, same as made with model 1, through kinematic analysis of behaviour with a defined path. During this analysis, it could be obtained from model 2, velocities and accelerations, but they are not needed. They are only interesting movements and finite displacements. Once that the consistence of movements has been checked (second approval), it comes when the behaviour with interpolated trajectories must be kinematically analyzed. Kinematic analysis with interpolated trajectories work with a minimum number of 3 master points. In this case, 3 points have been chosen; starting point, middle point and ending point. The number of interpolations has been of 50 ones in each strecht (each 2 master points there is an strecht), turning into a total of 100 interpolations. The interpolation method used is the cubic splines one with condition of constant acceleration both at the starting and at the ending point. This method creates the independent coordinates of interpolated points of each strecht. The dependent coordinates are achieved solving the non-linear constrain equations with Newton-Rhapson method. The method of cubic splines is very continuous, therefore when it is needed to design a trajectory in which there are at least 2 movements clearly differents, it is required to make it in 2 steps and join them later. That would be the case when any of the motors would keep stopped during the first movement, and another different motor would remain stopped during the second movement (and so on). Once that movement is obtained, they are calculated, also with numerical differenciation formulas, the independent velocities and accelerations. This process is analogous to the one before explained, reminding condition that acceleration when t=0 and t=end are 0. Dependent velocities and accelerations are calculated solving related derivatives of constrain equations. In a third approval of the model it is checked, again, consistence of interpolated movement. Inverse dynamics calculates, for a defined movement –knowing position, velocity and acceleration in each instant of time-, and knowing external forces that act (f.e. weights); which forces must be applied in motors (where there is control) in order to obtain requested movement. In inverse dynamics, each instant of time is independent of the others and it has a position, a velocity, an acceleration and known forces. In this specific case, it is intended to apply, at the moment, only forces due to the weight, though forces of another nature could have been added if it would have been preferred. The positions, velocities and accelerations, come from kinematic calculation. The inertial effect of forces taken into account (weight) is calculated. As final result of the inverse dynamic analysis, the are obtained torques that the 4 motors must apply to repeat requested movement with the forces that were acting. The fourth approval of the model consists on confirming that the achieved movement due to the use of the torques obtained in the inverse dynamics, are in accordance with movements from kinematic analysis (theoretical movement). For this, it is necessary to work with direct dynamics. Direct dynamic is in charge of calculating the movements of robot that results from applying torques at motors and forces at the robot. Therefore, the resultant real movement, as there was no change in any condition of the ones obtained at the inverse dynamics (motor torques and inertial forces due to weight of elements) must be the same than theoretical movement. When these results are achieved, it is considered that robot is ready to work. When a machining external force is introduced and it was not taken into account before during the inverse dynamics, and torques at motors considered are the ones of the inverse dynamics, the real movement obtained is not the same than the theoretical movement. Closed loop control is based on comparing real movement with expected movement and introducing required corrrections to minimize or cancel differences. They are applied gains in the way of corrections for position and/or tolerance to remove those differences. Position error is evaluated as the difference, in each point, between theoretical movemment (calculated in the kinematic analysis) and the real movement achieved for each machining force and for an specific gain. Finally, the position error obtained for each machining force and gains are mapped, giving a chart with the best accuracy that the robot can give for each operation that has been requested and which conditions must be provided.