20 resultados para three-dimensional model of an organisation
em Universidad Politécnica de Madrid
Resumo:
The vertical dynamic actions transmitted by railway vehicles to the ballasted track infrastructure is evaluated taking into account models with different degree of detail. In particular, we have studied this matter from a two-dimensional (2D) finite element model to a fully coupled three-dimensional (3D) multi-body finite element model. The vehicle and track are coupled via a non-linear Hertz contact mechanism. The method of Lagrange multipliers is used for the contact constraint enforcement between wheel and rail. Distributed elevation irregularities are generated based on power spectral density (PSD) distributions which are taken into account for the interaction. The numerical simulations are performed in the time domain, using a direct integration method for solving the transient problem due to the contact nonlinearities. The results obtained include contact forces, forces transmitted to the infrastructure (sleeper) by railpads and envelopes of relevant results for several track irregularities and speed ranges. The main contribution of this work is to identify and discuss coincidences and differences between discrete 2D models and continuum 3D models, as wheel as assessing the validity of evaluating the dynamic loading on the track with simplified 2D models
Resumo:
Soil tomography and morphological functions built over Minkowski functionals were used to describe the impact on pore structure of two soil management practices in a Mediterranean vineyard. Soil structure controls important physical and biological processes in soil–plant–microbial systems. Those processes are dominated by the geometry of soil pore structure, and a correct model of this geometry is critical for understanding them. Soil tomography has been shown to provide rich three-dimensional digital information on soil pore geometry. Recently, mathematical morphological techniques have been proposed as powerful tools to analyze and quantify the geometrical features of porous media. Minkowski functionals and morphological functions built over Minkowski functionals provide computationally efficient means to measure four fundamental geometrical features of three-dimensional geometrical objects, that is, volume, boundary surface, mean boundary surface curvature, and connectivity. We used the threshold and the dilation and erosion of three-dimensional images to generate morphological functions and explore the evolution of Minkowski functionals as the threshold and as the degree of dilation and erosion changes. We analyzed the three-dimensional geometry of soil pore space with X-ray computed tomography (CT) of intact soil columns from a Spanish Mediterranean vineyard by using two different management practices (conventional tillage versus permanent cover crop of resident vegetation). Our results suggested that morphological functions built over Minkowski functionals provide promising tools to characterize soil macropore structure and that the evolution of morphological features with dilation and erosion is more informative as an indicator of structure than moving threshold for both soil managements studied.
Resumo:
Current understanding of the synaptic organization of the brain depends to a large extent on knowledge about the synaptic inputs to the neurons. Indeed, the dendritic surfaces of pyramidal cells (the most common neuron in the cerebral cortex) are covered by thin protrusions named dendritic spines. These represent the targets of most excitatory synapses in the cerebral cortex and therefore, dendritic spines prove critical in learning, memory and cognition. This paper presents a new method that facilitates the analysis of the 3D structure of spine insertions in dendrites, providing insight on spine distribution patterns. This method is based both on the implementation of straightening and unrolling transformations to move the analysis process to a planar, unfolded arrangement, and on the design of DISPINE, an interactive environment that supports the visual analysis of 3D patterns.
Resumo:
Abstract The development of cognitive robots needs a strong “sensorial” support which should allow it to perceive the real world for interacting with it properly. Therefore the development of efficient visual-processing software to be equipped in effective artificial agents is a must. In this project we study and develop a visual-processing software that will work as the “eyes” of a cognitive robot. This software performs a three-dimensional mapping of the robot’s environment, providing it with the essential information required to make proper decisions during its navigation. Due to the complexity of this objective we have adopted the Scrum methodology in order to achieve an agile development process, which has allowed us to correct and improve in a fast way the successive versions of the product. The present project is structured in Sprints, which cover the different stages of the software development based on the requirements imposed by the robot and its real necessities. We have initially explored different commercial devices oriented to the acquisition of the required visual information, adopting the Kinect Sensor camera (Microsoft) as the most suitable option. Later on, we have studied the available software to manage the obtained visual information as well as its integration with the robot’s software, choosing the high-level platform Matlab as the common nexus to join the management of the camera, the management of the robot and the implementation of the behavioral algorithms. During the last stages the software has been developed to include the fundamental functionalities required to process the real environment, such as depth representation, segmentation, and clustering. Finally the software has been optimized to exhibit real-time processing and a suitable performance to fulfill the robot’s requirements during its operation in real situations.
Resumo:
We develop a novel remote sensing technique for the observation of waves on the ocean surface. Our method infers the 3-D waveform and radiance of oceanic sea states via a variational stereo imagery formulation. In this setting, the shape and radiance of the wave surface are given by minimizers of a composite energy functional that combines a photometric matching term along with regularization terms involving the smoothness of the unknowns. The desired ocean surface shape and radiance are the solution of a system of coupled partial differential equations derived from the optimality conditions of the energy functional. The proposed method is naturally extended to study the spatiotemporal dynamics of ocean waves and applied to three sets of stereo video data. Statistical and spectral analysis are carried out. Our results provide evidence that the observed omnidirectional wavenumber spectrum S(k) decays as k-2.5 is in agreement with Zakharov's theory (1999). Furthermore, the 3-D spectrum of the reconstructed wave surface is exploited to estimate wave dispersion and currents.
Resumo:
An Eulerian multifluid model is used to describe the evolution of an electrospray plume and the flow induced in the surrounding gas by the drag of the electrically charged spray droplets in the space between an injection electrode containing the electrospray source and a collector electrode. The spray is driven by the voltage applied between the two electrodes. Numerical computations and order-of-magnitude estimates for a quiescent gas show that the droplets begin to fly back toward the injection electrode at a certain critical value of the flux of droplets in the spray, which depends very much on the electrical conditions at the injection electrode. As the flux is increased toward its critical value, the electric field induced by the charge of the droplets partially balances the field due to the applied voltage in the vicinity of the injection electrode, leading to a spray that rapidly broadens at a distance from its origin of the order of the stopping distance at which the droplets lose their initial momentum and the effect of their inertia becomes negligible. The axial component of the electric field first changes sign in this region, causing the fly back. The flow induced in the gas significantly changes this picture in the conditions of typical experiments. A gas plume is induced by the drag of the droplets whose entrainment makes the radius of the spray away from the injection electrode smaller than in a quiescent gas, and convects the droplets across the region of negative axial electric field that appears around the origin of the spray when the flux of droplets is increased. This suppresses fly back and allows much higher fluxes to be reached than are possible in a quiescent gas. The limit of large droplet-to-gas mass ratio is discussed. Migration of satellite droplets to the shroud of the spray is reproduced by the Eulerian model, but this process is also affected by the motion of the gas. The gas flow preferentially pushes satellite droplets from the shroud to the core of the spray when the effect of the inertia of the droplets becomes negligible, and thus opposes the well-established electrostatic/inertial mechanism of segregation and may end up concentrating satellite droplets in an intermediate radial region of the spray.
Resumo:
The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.
Resumo:
In the cerebral cortex, most synapses are found in the neuropil, but relatively little is known about their 3-dimensional organization. Using an automated dual-beam electron microscope that combines focused ion beam milling and scanning electron microscopy, we have been able to obtain 10 three-dimensional samples with an average volume of 180 µm(3) from the neuropil of layer III of the young rat somatosensory cortex (hindlimb representation). We have used specific software tools to fully reconstruct 1695 synaptic junctions present in these samples and to accurately quantify the number of synapses per unit volume. These tools also allowed us to determine synapse position and to analyze their spatial distribution using spatial statistical methods. Our results indicate that the distribution of synaptic junctions in the neuropil is nearly random, only constrained by the fact that synapses cannot overlap in space. A theoretical model based on random sequential absorption, which closely reproduces the actual distribution of synapses, is also presented.
Resumo:
The experimental results obtained in experiment “STACO” made on board the Spacelab D-2 are re-visited, with image-analysis tools not then available. The configuration consisted of a liquid bridge between two solid supporting discs. An expected breakage occurred during the experiment. The recorded images are analysed and the measured behaviour compared with the results of a three dimensional model of the liquid dynamics, obtaining a much better fit than with linear models
Resumo:
The goal of this communication is to offer, through computer-aided design tools, a methodology to recover and virtually reconstruct disappeared buildings of our industrial historical heritage. It will be applied to the case of the flour factory "El Puente Colgante" (The Suspended Bridge) in Aranjuez, which was demolished in 2001. The process is as follows: After a historical analysis of the evolution in time of the flour factory, a field work provides data allowing an info graphic reconstruction of the factory. Once this information has been processed, a lifting of the current state is made with AutoCAD, and a three-dimensional model is built with the Rhinoceros application. Then images of the ensemble are obtained with the applications Rhinoceros and V-Ray, ending with a postproduction with Photoshop. The proposed methodology has permitted to obtain a three-dimensional model of the flour factory ?El Puente Colgante? in Aranjuez, with an accurate virtual reconstruction of its original state prior to demolition. The procedure exposed is susceptible to be generalized for any other example of industrial architecture.
Resumo:
There are a number of factors that contribute to the success of dental implant operations. Among others, is the choice of location in which the prosthetic tooth is to be implanted. This project offers a new approach to analyse jaw tissue for the purpose of selecting suitable locations for teeth implant operations. The application developed takes as input jaw computed tomography stack of slices and trims data outside the jaw area, which is the point of interest. It then reconstructs a three dimensional model of the jaw highlighting points of interest on the reconstructed model. On another hand, data mining techniques have been utilised in order to construct a prediction model based on an information dataset of previous dental implant operations with observed stability values. The goal is to find patterns within the dataset that would help predicting the success likelihood of an implant.
Resumo:
Amundsenisen is an ice field, 80 km2 in area, located in Southern Spitsbergen, Svalbard. Radio-echo sounding measurements at 20 MHz show high intensity returns from a nearly flat basal reflector at four zones, all of them with ice thickness larger than 500m. These reflections suggest possible subglacial lakes. To determine whether basal liquid water is compatible with current pressure and temperature conditions, we aim at applying a thermo mechanical model with a free boundary at the bed defined as solution of a Stefan problem for the interface ice-subglaciallake. The complexity of the problem suggests the use of a bi-dimensional model, but this requires that well-defined flowlines across the zones with suspected subglacial lakes are available. We define these flow lines from the solution of a three-dimensional dynamical model, and this is the main goal of the present contribution. We apply a three-dimensional full-Stokes model of glacier dynamics to Amundsenisen icefield. We are mostly interested in the plateau zone of the icefield, so we introduce artificial vertical boundaries at the heads of the main outlet glaciers draining Amundsenisen. At these boundaries we set velocity boundary conditions. Velocities near the centres of the heads of the outlets are known from experimental measurements. The velocities at depth are calculated according to a SIA velocity-depth profile, and those at the rest of the transverse section are computed following Nye’s (1952) model. We select as southeastern boundary of the model domain an ice divide, where we set boundary conditions of zero horizontal velocities and zero vertical shear stresses. The upper boundary is a traction-free boundary. For the basal boundary conditions, on the zones of suspected subglacial lakes we set free-slip boundary conditions, while for the rest of the basal boundary we use a friction law linking the sliding velocity to the basal shear stress,in such a way that, contrary to the shallow ice approximation, the basal shear stress is not equal to the basal driving stress but rather part of the solution.
Resumo:
A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail.
Resumo:
Overhead rail current collector systems for railway traction offer certain features, such as low installation height and reduced maintenance, which make them predominantly suitable for use in underground train infrastructures. Due to the increased demands of modern catenary systems and higher running speeds of new vehicles, a more capable design of the conductor rail is needed. A new overhead conductor rail has been developed and its design has been patented [13]. Modern simulation and modelling techniques were used in the development approach. The new conductor rail profile has a dynamic behaviour superior to that of the system currently in use. Its innovative design permits either an increase of catenary support spacing or a higher vehicle running speed. Both options ensure savings in installation or operating costs. The simulation model used to optimise the existing conductor rail profile included both a finite element model of the catenary and a three-dimensional multi-body system model of the pantograph. The contact force that appears between pantograph and catenary was obtained in simulation. A sensitivity analysis of the key parameters that influence in catenary dynamics was carried out, finally leading to the improved design.
Resumo:
In this paper, we describe the successful results of an international research project focused on the use of Web technology in the educational context. The article explains how this international project, funded by public organizations and developed over the last two academic years, focuses on the area of open educational resources (OER) and particularly the educational content of the OpenCourseWare (OCW) model. This initiative has been developed by a research group composed of researchers from three countries. The project was enabled by the Universidad Politécnica de Madrid OCW Office�s leadership of the Consortium of Latin American Universities and the distance education know-how of the Universidad Técnica Particular de Loja (UTPL, Ecuador). We give a full account of the project, methodology, main outcomes and validation. The project results have further consolidated the group, and increased the maturity of group members and networking with other groups in the area. The group is now participating in other research projects that continue the lines developed here