4 resultados para the major light harvesting complex of photosystem II (LHCIIb)

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

NADPH:protochlorophyllide oxidoreductase is a key enzyme for the light-induced greening of etiolated angiosperm plants. In barley, two POR proteins exist termed PORA and PORB that have previously been proposed to structurally and functionally cooperate in terms of a higher molecular mass light-harvesting complex named LHPP, in the prolamellar body of etioplasts [Nature 397 (1999) 80]. In this study we examined the expression pattern of LHPP during seedling etiolation and de-etiolation under different experimental conditions. Our results show that LHPP is developmentally expressed across the barley leaf gradient. We further provide evidence that LHPP operates both in plants that etiolate completely before being exposed to white light and in plants that etiolate only partially and begin light-harvesting as soon as traces of light become available in the uppermost parts of the soil. As a result of light absorption, in either case LHPP converts Pchlide a to chlorophyllide (Chlide) a and in turn disintegrates. The released Chlide a, as well as Chlide b produced upon LHPP’s light-dependent dissociation, which leads to the activation of the PORA as a Pchlide b-reducing enzyme, then bind to homologs of water-soluble chlorophyll proteins of Brassicaceae. We propose that these proteins transfer Chlide a and Chlide b to the thylakoids, where their esterification with phytol and assembly into the photosynthetic membrane complexes ultimately takes place. Presumably due to the tight coupling of LHPP synthesis and degradation, as well as WSCP formation and photosynthetic membrane assembly, efficient photo-protection is conferred onto the plant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His 6 -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1 D299A non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NADPH:protochlorophyllide oxidoreductase (POR; EC1.1.33.1) is a key enzyme for the light-induced greening of angiosperms. In barley, two POR proteins exist, termed PORA and PORB. These have previously been proposed to form higher molecular weight light-harvesting complexes in the prolamellar body of etioplasts (Reinbothe, C., Lebedev, N., and Reinbothe, S. (1999)Nature 397, 80–84). Here we report the in vitro reconstitution of such complexes from chemically synthesized protochlorophyllides (Pchlides) a andb and galacto- and sulfolipids. Low temperature (77 K) fluorescence measurements revealed that the reconstituted, lipid-containing complex displayed the same characteristics of photoactive Pchlide 650/657 as the presumed native complex in the prolamellar body. Moreover, Pchlide F650/657 was converted to chlorophyllide (Chlide) 684/690 upon illumination of the reconstituted complex with a 1-ms flash of white light. Identification and quantification of acetone-extractable pigments revealed that only the PORB-bound Pchlide a had been photoactive and was converted to Chlide a, whereas Pchlide b bound to the PORA remained photoinactive. Nondenaturing PAGE of the reconstituted Pchlide a/b-containing complex further demonstrated a size similar to that of the presumed native complexin vivo, suggesting that both complexes may be identical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently put forth a model of a protochlorophyllide (Pchlide) light-harvesting complex operative during angiosperm seedling de-etiolation (Reinbothe, C., Lebedev, N., and Reinbothe, S. (1999) Nature 397, 80–84). This model, which was based on in vitro reconstitution experiments with zinc analogs of Pchlide a and Pchlide b and the two NADPH:protochlorophyllide oxidoreductases (PORs), PORA and PORB, of barley, predicted a 5-fold excess of Pchlide b, relative to Pchlide a, in the prolamellar body of etioplasts. Recent work (Scheumann, V., Klement, H., Helfrich, M., Oster, U., Schoch, S., and Rüdiger, W. (1999) FEBS Lett. 445, 445–448), however, contradicted this model and reported that Pchlide b would not be present in etiolated plants. Here we demonstrate that Pchlide b is an abundant pigment in barley etioplasts but is rather metabolically unstable. It is rapidly converted to Pchlide a by virtue of 7-formyl reductase activity, an enzyme that had previously been implicated in the chlorophyll (Chl) b to Chl a reaction cycle. Our findings suggest that etiolated plants make use of 7-formyl reductase to fine tune the levels of Pchlide b and Pchlidea and thereby may regulate the steady-state level of light-harvesting POR-Pchlide comple