6 resultados para tensile
em Universidad Politécnica de Madrid
Resumo:
This study includes an analysis of the applicability of current models used for estimating the mechanical properties of conventional concrete to self-compacting concrete. The mechanical properties evaluated are: modulus of elasticity, tensile strength, and modulus of rupture. An extensive database which included the dosifications and the mechanical properties of 627 mixtures from 138 different references, was used. The models considered are: ACI, EC-2, NZS 3101:2006 (New Zealand code) and the CSA A23.3-04 (Canadian code). The precision in estimating the modulus of elasticity and tensile strength is acceptable for all models; however, all models are less precise in estimating the modulus of rupture.
Resumo:
Heart valve prostheses are used to replace native heart valves which that are damaged because of congenital diseases or due to ageing. Biological prostheses made of bovine pericardium are similar to native valves and do not require any anticoagulation treatment, but are less durable than mechanical prostheses and usually fail by tearing. Researches are oriented in improving the resistance and durability of biological heart valve prostheses in order to increase their life expectancy. To understand the mechanical behaviour of bovine pericardium and relate it to its microstructure (mainly collagen fibres concentration and orientation) uniaxial tensile tests have been performed on a model material made of collagen fibres. Small Angle Light Scattering (SALS) has been also used to characterize the microstructure without damaging the material. Results with the model material allowed us to obtain the orientation of the fibres, relating the microstructure to mechanical performance
Resumo:
The mechanical behavior and microstructure of minor ampullate gland silk (miS) of two orb-web spinning species, Argiope trifasciata and Nephila inaurata, were extensively characterized, enabling detailed comparison with other silks. The similarities and differences exhibited by miS when compared with the intensively studied major ampullate gland silk (MAS) and silkworm (Bombyx mori) silk offer a genuine opportunity for testing some of the hypotheses proposed to correlate microstructure and tensile properties in silk. In this work, we show that miSs of different species show similar properties, even when fibers spun by spiders that diverged over 100 million years are compared. The tensile properties of miS are comparable to those of MAS when tested in air, significantly in terms of work to fracture, but differ considerably when tested in water. In particular, miS does not show a supercontraction effect and an associated ground state. In this regard, the behavior of miS in water is similar to that of B. mori silk, and it is shown that the initial elastic modulus of both fibers can be explained using a common model. Intriguingly, the microstructural parameters measured in miS are comparable to those of MAS and considerably different from those found in B. mori. This fact suggests that some critical microstructural information is still missing in our description of silks, and our results suggest that the hydrophilicity of the lateral groups or the large scale organization of the sequences might be routes worth exploring.
Resumo:
Based on laser beam intensities above 109 W/cm2 with pulse energy of several Joules and duration of nanoseconds, Laser Shock Processing (LSP) is capable of inducing a surface compressive residual stress field. The paper presents experimental results showing the ability of LSP to improve the mechanical strength and cracking resistance of AA2024-T351 friction stir welded (FSW) joints. After introducing the FSW and LSP procedures, the results of microstructural analysis and micro-hardness are discussed. Video Image Correlation was used to measure the displacement and strain fields produced during tensile testing of flat specimens; the local and overall tensile behavior of native FSW joints vs. LSP treated were analyzed. Further, results of slow strain rate tensile testing of the FSW joints, native and LSP treated, performed in 3.5% NaCl solution are presented. The ability of LSP to improve the structural behavior of the FSW joints is underscored.
Resumo:
True stress-true strain curves of naturally spun viscid line fibers retrieved directly from the spiral of orb-webs built by Argiope trifasciata spiders were measured using a novel methodology. This new procedure combines a method for removing the aqueous coating of the fibers and a technique that allows the accurate measurement of their cross sectional area. Comparison of the tensile behaviour of different samples indicates that naturally spun viscid lines show a large variability, comparable to that of other silks, such as major ampullate gland silk and silkworm silk. Nevertheless, application of a statistical analysis allowed identifying two independent parameters that underlie the variability and characterize the observed range of true stress-true strain curves. Combination of this result with previous mechanical and microstructural data suggested the assignment of these two independent effects to the degree of alignment of the protein chains and to the local relative humidity which, in turn, depends on the composition of the viscous coating and on the external environmental conditions.
Resumo:
An extruded Mg–1Mn–1Nd (wt%) (MN11) alloy was tested in tension in an SEM at temperatures of 323K (50°C), 423 K (150°C), and 523 K (250°C) to analyse the local deformation mechanisms through in situ observations. Electron backscatter diffraction was performed before and after the deformation. It was found that the tensile strength decreased with increasing temperature, and the relative activity of different twinning and slip systems was quantified. At 323K (50C), extension twinning, basal, prismatic (a) and pyramidal (c+a) slip were active. Much less extension twinning was observed at 423K (150ºC) while basal slip and prismatic (a) slip were dominant and presented similar activities. At 523K (250ºC), twinning was not observed, and basal slip controlled the deformation.