6 resultados para swd: Ise
em Universidad Politécnica de Madrid
Resumo:
La Ingenieria del Software Experimental (ISE) traslada a la Ingenieria del Software (IS) el paradigma experimental que se ha aplicado con exito en diversas disciplinas cientificas. El objetivo de la ISE es hacer de la construccion del software una actividad predecible gracias al conocimiento de las relaciones entre los procesos de produccion del software y los productos que se obtienen. Para avanzar en el paradigma experimental en IS no es suficiente aplicar las tecnicas de diseno experimental y el analisis estadistico de datos, sino que es necesario construir una metodologia (bien desde cero o adaptada de otras disciplinas) basada en los principios generales del experimentalismo. La motivacion principal de esta investigacion es trabajar en la adaptacion de un aspecto particular del paradigma experimental a la experimentacion en IS: la replicación. En ISE se han realizado varias replicaciones de experimentos, sin embargo, aun existe discusion sobre el modo mas adecuado de llevarlas a cabo. Algunas preguntas que surgen de esta discusion son: .se deben reutilizar los materiales del experimento base?, .la replicacion debe realizarse de forma independiente, o puede existir algun tipo de comunicacion entre experimentadores y replicadores?, .que elementos de la estructura del experimento a replicar pueden variarse y aun considerarse una replicacion? En esta investigacion se estudia el concepto de replicacion desde una perspectiva teorico-practica para su incorporacion a la ISE. En concreto, se persiguen los siguientes objetivos: 1) estudio del concepto de replicacion en distintas disciplinas cientificas para tener mayor comprension de su importacion a la ISE, 2) desarrollo de una tipologia de replicaciones que ayude a comprender tanto los diferentes tipos de replicacion que pueden llevarse a cabo en ISE, asi como el papel que cada uno de estos tipos desempena en la verificacion de resultados experimentales y 3) desarrollo de un marco conceptual con ideas clave para comparar conjuntos de replicaciones y obtener conocimiento de ellas que sea de utilidad tanto para el profesional como para el investigador. Para la evaluacion de las propuestas de esta tesis se usa un conjunto de 20 replicaciones de diversos autores donde entre otros aspectos se evalua la efectividad de tres tecnicas de evaluacion de software.
Resumo:
The main goal of this proposal is to join together the owners of the most advanced CPV technology, with respect to the state of the art, in order to research from its leading position new applications for CPV systems. In addition to opening up new markets, it will unveil possible sources of failure in new environments outside Europe, in order to assure component reliability. The proposed project will also try to improve the current technology of the industrial partners (ISOFOTON and CONCENTRIX) by accelerating the learning curve that CPV must follow in order to reach the competitive market, and lowering the cost under the current flat panel PV significantly within 3-4 years. The use of CPV systems in remote areas, together with harsher radiation, ambient and infrastructure conditions will help to increase the rate of progress of this technology. In addition, the ISFOC s contribution, which brings together seven power plants from seven CPV technologies up to 3 MWpeak, will allow creating the most complete database of components and systems performance to be generated as well as the effects of radiation and meteorology on systems operations. Finally, regarding the new applications for CPV subject, the project will use a CPV system sized 25 kWp in a stand-alone station in Egypt (NWRC) for the first time for water pumping and irrigation purposes. In a similar way ISOFOTON will connect up to 25 kWp CPV to the Moroccan ONE utility grid. From the research content point of view of this project, which is directly addressed by the scope of the call, the cooperative research between UPM, FhG-ISE and the two companies will be favoured by the fact that all are progressing in similar directions: developing two-stage optics CPV systems. In addition to these technology improvements the UPM is very interested in developing a new concept of module, recently patented, which will fulfil all required characteristics of a good CPV with less components and reducing cost.
Resumo:
The Europe-Japan Collaborative Research Project on Concentrator Photovoltaics (CPV) has been initiated under support by the EC (European Commission) and NEDO (New Energy and Industrial Technology Development Organization) since June 2011. This is project (NGCPV Project; a New Generation of Concentrator PhotoVoltaic cells, modules and systems) is aiming to accelerate the move to very high efficiency and lower cost CPV technologies and to enhance widespread deployment of CPV systems. 7 organizations such as UPM, FhG-ISE Imperial College, BSQ, CEA-INES, ENEA, and PSE in Europe and 9 organizations such as TTI, Univ. Tokyo, AIST, Sharp Co. Daido Steel Co., Kobe Univ., Miyazaki Univ., Asahi Kasei Co., and Takano Co. participate in this project. The targets of this project are 1) to develop world-record efficiency CPV cells of more than 45%, 2) to develop world-record efficiency CPV modules of 35%, 3) to establish standard measurements of CPV cells and modules, 4) to install 50kW CPV system in Spain, to carry out field test of CPV system and to manage power generation of CPV systems, and 5) to develop high-efficiency and low-cost new materials and structure cells such as III-V-N, III-V-on-Si tandem, quantum dots and wells. This paper presents outline of this project and most recent results such as world record efficiency (37.9% under 1-sun) cell and high-efficiency (43.5% under 240-306 suns) concentrator cell with inverted epitaxial grown InGaP/GaAs/InGaAs 3-junction solar cells.
Resumo:
La Ingeniería del Software Empírico (ISE) utiliza como herramientas los estudios empíricos para conseguir evidencias que ayuden a conocer bajo qué circunstancias es mejor usar una tecnología software en lugar de otra. La investigación en la que se enmarca este TFM explora si las intuiciones y/o preferencias de las personas que realizan las pruebas de software, son capaces de predecir la efectividad de tres técnicas de evaluación de código: lectura por abstracciones sucesivas, cobertura de decisión y partición en clases de equivalencia. Para conseguir dicho objetivo, se analizan los datos recogidos en un estudio empírico, realizado por las tutoras de este TFM. En el estudio empírico distintos sujetos aplican las tres técnicas de evaluación de código a tres programas distintos, a los que se les habían introducido una serie de faltas artificialmente. Los sujetos deben reportar los fallos encontrados en los programas, así como, contestar a una serie de preguntas sobre sus intuiciones y preferencias. A la hora de analizar los datos del estudio, se ha comprobado: 1) cuáles son sus intuiciones y preferencias (mediante el test estadístico X2 de Pearson); 2) si los sujetos cambian de opinión después de aplicar las técnicas (para ello se ha utilizado índice de Kappa, el Test de McNemar-Bowker y el Test de Stuart-Maxwell); 3) la consistencia de las distintas preguntas (mediante el índice de Kappa), comparando: intuiciones con intuiciones, preferencias con preferencias e intuiciones con preferencias; 4) Por último, si hay coincidencia entre las intuiciones y preferencias con la efectividad real obtenida (para ello se ha utilizado, el Modelo Lineal General con medidas repetidas). Los resultados muestran que, no hay una intuición clara ni tampoco una preferencia concreta, con respecto a los programas. Además aunque existen cambios de opinión después de aplicar las técnicas, no se encuentran evidencias claras para afirmar que la intuición y preferencias influyen en su efectividad. Finalmente, existen relaciones entre las intuiciones con intuiciones, preferencias con preferencias e intuiciones con preferencias, además esta relación es más notoria después de aplicar las técnicas. ----ABSTRACT----Empirical Software Engineering (ESE) uses empirical studies as a mean to generate evidences to help determine under what circumstances it is convenient to use a given software technology. This Master Thesis is part of a research that explores whether intuitions and/or preferences of testers, can be used to predict the effectiveness of three code evaluation techniques: reading by stepwise abstractions, decision coverage and equivalence partitioning. To achieve this goal, this Master Thesis analyzes the data collected in an empirical study run by the tutors. In the empirical study, different subjects apply three code evaluation techniques to three different programs. A series of faults were artificially introduced to the programs. Subjects are required to report the defects found in the programs, as well as answer a series of questions about their intuitions and preferences. The data analyses test: 1) what are the intuitions and preferences of the subjects (using the Pearson X2 test); 2) whether subjects change their minds after applying the techniques (using the Kappa coefficient, McNemar-Bowker test, and Stuart-Maxwell test); 3) the consistency of the different questions, comparing: intuitions versus intuitions, preferences versus preferences and preferences versus intuitions (using the Kappa coefficient); 4) finally, if intuitions and/or preferences predict the actual effectiveness obtained (using the General Linear Model, repeated measures). The results show that there is not clear intuition or particular preference with respect to the programs. Moreover, although there are changes of mind after applying the techniques, there are not clear evidences to claim that intuition and preferences influence their effectiveness. Finally, there is a relationship between the intuitions versus intuitions, preferences versus preferences and intuitions versus preferences; this relationship is more noticeable after applying the techniques.
Resumo:
Antecedentes: Esta investigación se enmarca principalmente en la replicación y secundariamente en la síntesis de experimentos en Ingeniería de Software (IS). Para poder replicar, es necesario disponer de todos los detalles del experimento original. Sin embargo, la descripción de los experimentos es habitualmente incompleta debido a la existencia de conocimiento tácito y a la existencia de otros problemas tales como: La carencia de un formato estándar de reporte, la inexistencia de herramientas que den soporte a la generación de reportes experimentales, etc. Esto provoca que no se pueda reproducir fielmente el experimento original. Esta problemática limita considerablemente la capacidad de los experimentadores para llevar a cabo replicaciones y por ende síntesis de experimentos. Objetivo: La investigación tiene como objetivo formalizar el proceso experimental en IS, de modo que facilite la comunicación de información entre experimentadores. Contexto: El presente trabajo de tesis doctoral ha sido desarrollado en el seno del Grupo de Investigación en Ingeniería del Software Empírica (GrISE) perteneciente a la Escuela Técnica Superior de Ingenieros Informáticos (ETSIINF) de la Universidad Politécnica de Madrid (UPM), como parte del proyecto TIN2011-23216 denominado “Tecnologías para la Replicación y Síntesis de Experimentos en Ingeniería de Software”, el cual es financiado por el Gobierno de España. El grupo GrISE cumple a la perfección con los requisitos necesarios (familia de experimentos establecida, con al menos tres líneas experimentales y una amplia experiencia en replicaciones (16 replicaciones hasta 2011 en la línea de técnicas de pruebas de software)) y ofrece las condiciones para que la investigación se lleve a cabo de la mejor manera, como por ejemplo, el acceso total a su información. Método de Investigación: Para cumplir este objetivo se opta por Action Research (AR) como el método de investigación más adecuado a las características de la investigación, para obtener resultados a través de aproximaciones sucesivas que abordan los problemas concretos de comunicación entre experimentadores. Resultados: Se formalizó el modelo conceptual del ciclo experimental desde la perspectiva de los 3 roles principales que representan los experimentadores en el proceso experimental, siendo estos: Gestor de la Investigación (GI), Gestor del Experimento (GE) y Experimentador Senior (ES). Por otra parte, se formalizó el modelo del ciclo experimental, a través de: Un workflow del ciclo y un diagrama de procesos. Paralelamente a la formalización del proceso experimental en IS, se desarrolló ISRE (de las siglas en inglés Infrastructure for Sharing and Replicating Experiments), una prueba de concepto de entorno de soporte a la experimentación en IS. Finalmente, se plantearon guías para el desarrollo de entornos de soporte a la experimentación en IS, en base al estudio de las características principales y comunes de los modelos de las herramientas de soporte a la experimentación en distintas disciplinas experimentales. Conclusiones: La principal contribución de la investigación esta representada por la formalización del proceso experimental en IS. Los modelos que representan la formalización del ciclo experimental, así como la herramienta ISRE, construida a modo de evaluación de los modelos, fueron encontrados satisfactorios por los experimentadores del GrISE. Para consolidar la validez de la formalización, consideramos que este estudio debería ser replicado en otros grupos de investigación representativos en la comunidad de la IS experimental. Futuras Líneas de Investigación: El cumplimiento de los objetivos, de la mano con los hallazgos alcanzados, han dado paso a nuevas líneas de investigación, las cuales son las siguientes: (1) Considerar la construcción de un mecanismo para facilitar el proceso de hacer explícito el conocimiento tácito de los experimentadores por si mismos de forma colaborativa y basados en el debate y el consenso , (2) Continuar la investigación empírica en el mismo grupo de investigación hasta cubrir completamente el ciclo experimental (por ejemplo: experimentos nuevos, síntesis de resultados, etc.), (3) Replicar el proceso de investigación en otros grupos de investigación en ISE, y (4) Renovar la tecnología de la prueba de concepto, tal que responda a las restricciones y necesidades de un entorno real de investigación. ABSTRACT Background: This research addresses first and foremost the replication and also the synthesis of software engineering (SE) experiments. Replication is impossible without access to all the details of the original experiment. But the description of experiments is usually incomplete because knowledge is tacit, there is no standard reporting format or there are hardly any tools to support the generation of experimental reports, etc. This means that the original experiment cannot be reproduced exactly. These issues place considerable constraints on experimenters’ options for carrying out replications and ultimately synthesizing experiments. Aim: The aim of the research is to formalize the SE experimental process in order to facilitate information communication among experimenters. Context: This PhD research was developed within the empirical software engineering research group (GrISE) at the Universidad Politécnica de Madrid (UPM)’s School of Computer Engineering (ETSIINF) as part of project TIN2011-23216 entitled “Technologies for Software Engineering Experiment Replication and Synthesis”, which was funded by the Spanish Government. The GrISE research group fulfils all the requirements (established family of experiments with at least three experimental lines and lengthy replication experience (16 replications prior to 2011 in the software testing techniques line)) and provides favourable conditions for the research to be conducted in the best possible way, like, for example, full access to information. Research Method: We opted for action research (AR) as the research method best suited to the characteristics of the investigation. Results were generated successive rounds of AR addressing specific communication problems among experimenters. Results: The conceptual model of the experimental cycle was formalized from the viewpoint of three key roles representing experimenters in the experimental process. They were: research manager, experiment manager and senior experimenter. The model of the experimental cycle was formalized by means of a workflow and a process diagram. In tandem with the formalization of the SE experimental process, infrastructure for sharing and replicating experiments (ISRE) was developed. ISRE is a proof of concept of a SE experimentation support environment. Finally, guidelines for developing SE experimentation support environments were designed based on the study of the key features that the models of experimentation support tools for different experimental disciplines had in common. Conclusions: The key contribution of this research is the formalization of the SE experimental process. GrISE experimenters were satisfied with both the models representing the formalization of the experimental cycle and the ISRE tool built in order to evaluate the models. In order to further validate the formalization, this study should be replicated at other research groups representative of the experimental SE community. Future Research Lines: The achievement of the aims and the resulting findings have led to new research lines, which are as follows: (1) assess the feasibility of building a mechanism to help experimenters collaboratively specify tacit knowledge based on debate and consensus, (2) continue empirical research at the same research group in order to cover the remainder of the experimental cycle (for example, new experiments, results synthesis, etc.), (3) replicate the research process at other ESE research groups, and (4) update the tools of the proof of concept in order to meet the constraints and needs of a real research environment.
Resumo:
En el mundo actual las aplicaciones basadas en sistemas biométricos, es decir, aquellas que miden las señales eléctricas de nuestro organismo, están creciendo a un gran ritmo. Todos estos sistemas incorporan sensores biomédicos, que ayudan a los usuarios a controlar mejor diferentes aspectos de la rutina diaria, como podría ser llevar un seguimiento detallado de una rutina deportiva, o de la calidad de los alimentos que ingerimos. Entre estos sistemas biométricos, los que se basan en la interpretación de las señales cerebrales, mediante ensayos de electroencefalografía o EEG están cogiendo cada vez más fuerza para el futuro, aunque están todavía en una situación bastante incipiente, debido a la elevada complejidad del cerebro humano, muy desconocido para los científicos hasta el siglo XXI. Por estas razones, los dispositivos que utilizan la interfaz cerebro-máquina, también conocida como BCI (Brain Computer Interface), están cogiendo cada vez más popularidad. El funcionamiento de un sistema BCI consiste en la captación de las ondas cerebrales de un sujeto para después procesarlas e intentar obtener una representación de una acción o de un pensamiento del individuo. Estos pensamientos, correctamente interpretados, son posteriormente usados para llevar a cabo una acción. Ejemplos de aplicación de sistemas BCI podrían ser mover el motor de una silla de ruedas eléctrica cuando el sujeto realice, por ejemplo, la acción de cerrar un puño, o abrir la cerradura de tu propia casa usando un patrón cerebral propio. Los sistemas de procesamiento de datos están evolucionando muy rápido con el paso del tiempo. Los principales motivos son la alta velocidad de procesamiento y el bajo consumo energético de las FPGAs (Field Programmable Gate Array). Además, las FPGAs cuentan con una arquitectura reconfigurable, lo que las hace más versátiles y potentes que otras unidades de procesamiento como las CPUs o las GPUs.En el CEI (Centro de Electrónica Industrial), donde se lleva a cabo este TFG, se dispone de experiencia en el diseño de sistemas reconfigurables en FPGAs. Este TFG es el segundo de una línea de proyectos en la cual se busca obtener un sistema capaz de procesar correctamente señales cerebrales, para llegar a un patrón común que nos permita actuar en consecuencia. Más concretamente, se busca detectar cuando una persona está quedándose dormida a través de la captación de unas ondas cerebrales, conocidas como ondas alfa, cuya frecuencia está acotada entre los 8 y los 13 Hz. Estas ondas, que aparecen cuando cerramos los ojos y dejamos la mente en blanco, representan un estado de relajación mental. Por tanto, este proyecto comienza como inicio de un sistema global de BCI, el cual servirá como primera toma de contacto con el procesamiento de las ondas cerebrales, para el posterior uso de hardware reconfigurable sobre el cual se implementarán los algoritmos evolutivos. Por ello se vuelve necesario desarrollar un sistema de procesamiento de datos en una FPGA. Estos datos se procesan siguiendo la metodología de procesamiento digital de señales, y en este caso se realiza un análisis de la frecuencia utilizando la transformada rápida de Fourier, o FFT. Una vez desarrollado el sistema de procesamiento de los datos, se integra con otro sistema que se encarga de captar los datos recogidos por un ADC (Analog to Digital Converter), conocido como ADS1299. Este ADC está especialmente diseñado para captar potenciales del cerebro humano. De esta forma, el sistema final capta los datos mediante el ADS1299, y los envía a la FPGA que se encarga de procesarlos. La interpretación es realizada por los usuarios que analizan posteriormente los datos procesados. Para el desarrollo del sistema de procesamiento de los datos, se dispone primariamente de dos plataformas de estudio, a partir de las cuales se captarán los datos para después realizar el procesamiento: 1. La primera consiste en una herramienta comercial desarrollada y distribuida por OpenBCI, proyecto que se dedica a la venta de hardware para la realización de EEG, así como otros ensayos. Esta herramienta está formada por un microprocesador, un módulo de memoria SD para el almacenamiento de datos, y un módulo de comunicación inalámbrica que transmite los datos por Bluetooth. Además cuenta con el mencionado ADC ADS1299. Esta plataforma ofrece una interfaz gráfica que sirve para realizar la investigación previa al diseño del sistema de procesamiento, al permitir tener una primera toma de contacto con el sistema. 2. La segunda plataforma consiste en un kit de evaluación para el ADS1299, desde la cual se pueden acceder a los diferentes puertos de control a través de los pines de comunicación del ADC. Esta plataforma se conectará con la FPGA en el sistema integrado. Para entender cómo funcionan las ondas más simples del cerebro, así como saber cuáles son los requisitos mínimos en el análisis de ondas EEG se realizaron diferentes consultas con el Dr Ceferino Maestu, neurofisiólogo del Centro de Tecnología Biomédica (CTB) de la UPM. Él se encargó de introducirnos en los distintos procedimientos en el análisis de ondas en electroencefalogramas, así como la forma en que se deben de colocar los electrodos en el cráneo. Para terminar con la investigación previa, se realiza en MATLAB un primer modelo de procesamiento de los datos. Una característica muy importante de las ondas cerebrales es la aleatoriedad de las mismas, de forma que el análisis en el dominio del tiempo se vuelve muy complejo. Por ello, el paso más importante en el procesamiento de los datos es el paso del dominio temporal al dominio de la frecuencia, mediante la aplicación de la transformada rápida de Fourier o FFT (Fast Fourier Transform), donde se pueden analizar con mayor precisión los datos recogidos. El modelo desarrollado en MATLAB se utiliza para obtener los primeros resultados del sistema de procesamiento, el cual sigue los siguientes pasos. 1. Se captan los datos desde los electrodos y se escriben en una tabla de datos. 2. Se leen los datos de la tabla. 3. Se elige el tamaño temporal de la muestra a procesar. 4. Se aplica una ventana para evitar las discontinuidades al principio y al final del bloque analizado. 5. Se completa la muestra a convertir con con zero-padding en el dominio del tiempo. 6. Se aplica la FFT al bloque analizado con ventana y zero-padding. 7. Los resultados se llevan a una gráfica para ser analizados. Llegados a este punto, se observa que la captación de ondas alfas resulta muy viable. Aunque es cierto que se presentan ciertos problemas a la hora de interpretar los datos debido a la baja resolución temporal de la plataforma de OpenBCI, este es un problema que se soluciona en el modelo desarrollado, al permitir el kit de evaluación (sistema de captación de datos) actuar sobre la velocidad de captación de los datos, es decir la frecuencia de muestreo, lo que afectará directamente a esta precisión. Una vez llevado a cabo el primer procesamiento y su posterior análisis de los resultados obtenidos, se procede a realizar un modelo en Hardware que siga los mismos pasos que el desarrollado en MATLAB, en la medida que esto sea útil y viable. Para ello se utiliza el programa XPS (Xilinx Platform Studio) contenido en la herramienta EDK (Embedded Development Kit), que nos permite diseñar un sistema embebido. Este sistema cuenta con: Un microprocesador de tipo soft-core llamado MicroBlaze, que se encarga de gestionar y controlar todo el sistema; Un bloque FFT que se encarga de realizar la transformada rápida Fourier; Cuatro bloques de memoria BRAM, donde se almacenan los datos de entrada y salida del bloque FFT y un multiplicador para aplicar la ventana a los datos de entrada al bloque FFT; Un bus PLB, que consiste en un bus de control que se encarga de comunicar el MicroBlaze con los diferentes elementos del sistema. Tras el diseño Hardware se procede al diseño Software utilizando la herramienta SDK(Software Development Kit).También en esta etapa se integra el sistema de captación de datos, el cual se controla mayoritariamente desde el MicroBlaze. Por tanto, desde este entorno se programa el MicroBlaze para gestionar el Hardware que se ha generado. A través del Software se gestiona la comunicación entre ambos sistemas, el de captación y el de procesamiento de los datos. También se realiza la carga de los datos de la ventana a aplicar en la memoria correspondiente. En las primeras etapas de desarrollo del sistema, se comienza con el testeo del bloque FFT, para poder comprobar el funcionamiento del mismo en Hardware. Para este primer ensayo, se carga en la BRAM los datos de entrada al bloque FFT y en otra BRAM los datos de la ventana aplicada. Los datos procesados saldrán a dos BRAM, una para almacenar los valores reales de la transformada y otra para los imaginarios. Tras comprobar el correcto funcionamiento del bloque FFT, se integra junto al sistema de adquisición de datos. Posteriormente se procede a realizar un ensayo de EEG real, para captar ondas alfa. Por otro lado, y para validar el uso de las FPGAs como unidades ideales de procesamiento, se realiza una medición del tiempo que tarda el bloque FFT en realizar la transformada. Este tiempo se compara con el tiempo que tarda MATLAB en realizar la misma transformada a los mismos datos. Esto significa que el sistema desarrollado en Hardware realiza la transformada rápida de Fourier 27 veces más rápido que lo que tarda MATLAB, por lo que se puede ver aquí la gran ventaja competitiva del Hardware en lo que a tiempos de ejecución se refiere. En lo que al aspecto didáctico se refiere, este TFG engloba diferentes campos. En el campo de la electrónica: Se han mejorado los conocimientos en MATLAB, así como diferentes herramientas que ofrece como FDATool (Filter Design Analysis Tool). Se han adquirido conocimientos de técnicas de procesado de señal, y en particular, de análisis espectral. Se han mejorado los conocimientos en VHDL, así como su uso en el entorno ISE de Xilinx. Se han reforzado los conocimientos en C mediante la programación del MicroBlaze para el control del sistema. Se ha aprendido a crear sistemas embebidos usando el entorno de desarrollo de Xilinx usando la herramienta EDK (Embedded Development Kit). En el campo de la neurología, se ha aprendido a realizar ensayos EEG, así como a analizar e interpretar los resultados mostrados en el mismo. En cuanto al impacto social, los sistemas BCI afectan a muchos sectores, donde destaca el volumen de personas con discapacidades físicas, para los cuales, este sistema implica una oportunidad de aumentar su autonomía en el día a día. También otro sector importante es el sector de la investigación médica, donde los sistemas BCIs son aplicables en muchas aplicaciones como, por ejemplo, la detección y estudio de enfermedades cognitivas.