2 resultados para sub-group

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure–function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al3+ sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure–function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al3+ sensing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv viciae (Rlv) is a bacterium able to establish effective symbioses with four different legume genera: Pisum, Lens, Lathyrus and Vicia. Classic studies using trap plants have previously shown that, given a choice, different plants prefer specific genotypes of rhizobia, which are adapted to the host (1, 2). In previous work we have performed a Pool-Seq analysis bases on pooled DNA samples from Rlv nodule isolates obtained from Pisum sativum, Lens culinaris, Vicia fava and V. sativa plants, used as rhizobial traps. This experiment allowed us to test the host preference hypothesis: different plant hosts select specific sub-populations of rhizobia from the available population present in a given soil. We have observed that plant-selected sub-populations are different at the single nucleotide polymorphism (SNP) level. We have selected individual isolates from each sub-population (9 fava-bean isolates, 14 pea isolates 9 vetch isolates and 9 lentil isolates) and sequenced their genomes at draft level (ca. 30x, 90 contigs). Genomic analyses have been carried out using J-species and CMG-Biotools. All the isolates had similar genome size (7.5 Mb) and number of genes (7,300). The resulting Average Nucleotide Identity (ANIm) tree showed that Rhizobium leguminosarum bv viciae is a highly diverse group. Each plant-selected subpopulation showed a closed pangenome and core genomes of similar size (11,500 and 4,800 genes, respectively). The addition of all four sub-population results in a larger, closed pangenome of 19,040 genes and a core genome of similar size (4,392 genes). Each sub-population contains a characteristic set of genes but no universal, plant-specific genes were found. The core genome obtained from all four sub-populations is probably a representative core genome for Rhizobium leguminosarum, given that the reference genome (Rhizobium leguminosarum bv. viciae strain 3841) contains most of the core genome. We have also analyzed the symbiotic cluster (nod), and different nod cluster genotypes were found in each sub-population. Supported by MINECO (Consolider-Ingenio 2010, MICROGEN Project, CSD2009-00006).