18 resultados para stochastic nonlinear systems
em Universidad Politécnica de Madrid
Resumo:
This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies.
Resumo:
This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.
Resumo:
An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm.
Resumo:
The analysis of complex nonlinear systems is often carried out using simpler piecewise linear representations of them. A principled and practical technique is proposed to linearize and evaluate arbitrary continuous nonlinear functions using polygonal (continuous piecewise linear) models under the L1 norm. A thorough error analysis is developed to guide an optimal design of two kinds of polygonal approximations in the asymptotic case of a large budget of evaluation subintervals N. The method allows the user to obtain the level of linearization (N) for a target approximation error and vice versa. It is suitable for, but not limited to, an efficient implementation in modern Graphics Processing Units (GPUs), allowing real-time performance of computationally demanding applications. The quality and efficiency of the technique has been measured in detail on two nonlinear functions that are widely used in many areas of scientific computing and are expensive to evaluate.
Resumo:
In this paper a new method for fault isolation in a class of continuous-time stochastic dynamical systems is proposed. The method is framed in the context of model-based analytical redundancy, consisting in the generation of a residual signal by means of a diagnostic observer, for its posterior analysis. Once a fault has been detected, and assuming some basic a priori knowledge about the set of possible failures in the plant, the isolation task is then formulated as a type of on-line statistical classification problem. The proposed isolation scheme employs in parallel different hypotheses tests on a statistic of the residual signal, one test for each possible fault. This isolation method is characterized by deriving for the unidimensional case, a sufficient isolability condition as well as an upperbound of the probability of missed isolation. Simulation examples illustrate the applicability of the proposed scheme.
Resumo:
El uso de aritmética de punto fijo es una opción de diseño muy extendida en sistemas con fuertes restricciones de área, consumo o rendimiento. Para producir implementaciones donde los costes se minimicen sin impactar negativamente en la precisión de los resultados debemos llevar a cabo una asignación cuidadosa de anchuras de palabra. Encontrar la combinación óptima de anchuras de palabra en coma fija para un sistema dado es un problema combinatorio NP-hard al que los diseñadores dedican entre el 25 y el 50 % del ciclo de diseño. Las plataformas hardware reconfigurables, como son las FPGAs, también se benefician de las ventajas que ofrece la aritmética de coma fija, ya que éstas compensan las frecuencias de reloj más bajas y el uso más ineficiente del hardware que hacen estas plataformas respecto a los ASICs. A medida que las FPGAs se popularizan para su uso en computación científica los diseños aumentan de tamaño y complejidad hasta llegar al punto en que no pueden ser manejados eficientemente por las técnicas actuales de modelado de señal y ruido de cuantificación y de optimización de anchura de palabra. En esta Tesis Doctoral exploramos distintos aspectos del problema de la cuantificación y presentamos nuevas metodologías para cada uno de ellos: Las técnicas basadas en extensiones de intervalos han permitido obtener modelos de propagación de señal y ruido de cuantificación muy precisos en sistemas con operaciones no lineales. Nosotros llevamos esta aproximación un paso más allá introduciendo elementos de Multi-Element Generalized Polynomial Chaos (ME-gPC) y combinándolos con una técnica moderna basada en Modified Affine Arithmetic (MAA) estadístico para así modelar sistemas que contienen estructuras de control de flujo. Nuestra metodología genera los distintos caminos de ejecución automáticamente, determina las regiones del dominio de entrada que ejercitarán cada uno de ellos y extrae los momentos estadísticos del sistema a partir de dichas soluciones parciales. Utilizamos esta técnica para estimar tanto el rango dinámico como el ruido de redondeo en sistemas con las ya mencionadas estructuras de control de flujo y mostramos la precisión de nuestra aproximación, que en determinados casos de uso con operadores no lineales llega a tener tan solo una desviación del 0.04% con respecto a los valores de referencia obtenidos mediante simulación. Un inconveniente conocido de las técnicas basadas en extensiones de intervalos es la explosión combinacional de términos a medida que el tamaño de los sistemas a estudiar crece, lo cual conlleva problemas de escalabilidad. Para afrontar este problema presen tamos una técnica de inyección de ruidos agrupados que hace grupos con las señales del sistema, introduce las fuentes de ruido para cada uno de los grupos por separado y finalmente combina los resultados de cada uno de ellos. De esta forma, el número de fuentes de ruido queda controlado en cada momento y, debido a ello, la explosión combinatoria se minimiza. También presentamos un algoritmo de particionado multi-vía destinado a minimizar la desviación de los resultados a causa de la pérdida de correlación entre términos de ruido con el objetivo de mantener los resultados tan precisos como sea posible. La presente Tesis Doctoral también aborda el desarrollo de metodologías de optimización de anchura de palabra basadas en simulaciones de Monte-Cario que se ejecuten en tiempos razonables. Para ello presentamos dos nuevas técnicas que exploran la reducción del tiempo de ejecución desde distintos ángulos: En primer lugar, el método interpolativo aplica un interpolador sencillo pero preciso para estimar la sensibilidad de cada señal, y que es usado después durante la etapa de optimización. En segundo lugar, el método incremental gira en torno al hecho de que, aunque es estrictamente necesario mantener un intervalo de confianza dado para los resultados finales de nuestra búsqueda, podemos emplear niveles de confianza más relajados, lo cual deriva en un menor número de pruebas por simulación, en las etapas iniciales de la búsqueda, cuando todavía estamos lejos de las soluciones optimizadas. Mediante estas dos aproximaciones demostramos que podemos acelerar el tiempo de ejecución de los algoritmos clásicos de búsqueda voraz en factores de hasta x240 para problemas de tamaño pequeño/mediano. Finalmente, este libro presenta HOPLITE, una infraestructura de cuantificación automatizada, flexible y modular que incluye la implementación de las técnicas anteriores y se proporciona de forma pública. Su objetivo es ofrecer a desabolladores e investigadores un entorno común para prototipar y verificar nuevas metodologías de cuantificación de forma sencilla. Describimos el flujo de trabajo, justificamos las decisiones de diseño tomadas, explicamos su API pública y hacemos una demostración paso a paso de su funcionamiento. Además mostramos, a través de un ejemplo sencillo, la forma en que conectar nuevas extensiones a la herramienta con las interfaces ya existentes para poder así expandir y mejorar las capacidades de HOPLITE. ABSTRACT Using fixed-point arithmetic is one of the most common design choices for systems where area, power or throughput are heavily constrained. In order to produce implementations where the cost is minimized without negatively impacting the accuracy of the results, a careful assignment of word-lengths is required. The problem of finding the optimal combination of fixed-point word-lengths for a given system is a combinatorial NP-hard problem to which developers devote between 25 and 50% of the design-cycle time. Reconfigurable hardware platforms such as FPGAs also benefit of the advantages of fixed-point arithmetic, as it compensates for the slower clock frequencies and less efficient area utilization of the hardware platform with respect to ASICs. As FPGAs become commonly used for scientific computation, designs constantly grow larger and more complex, up to the point where they cannot be handled efficiently by current signal and quantization noise modelling and word-length optimization methodologies. In this Ph.D. Thesis we explore different aspects of the quantization problem and we present new methodologies for each of them: The techniques based on extensions of intervals have allowed to obtain accurate models of the signal and quantization noise propagation in systems with non-linear operations. We take this approach a step further by introducing elements of MultiElement Generalized Polynomial Chaos (ME-gPC) and combining them with an stateof- the-art Statistical Modified Affine Arithmetic (MAA) based methodology in order to model systems that contain control-flow structures. Our methodology produces the different execution paths automatically, determines the regions of the input domain that will exercise them, and extracts the system statistical moments from the partial results. We use this technique to estimate both the dynamic range and the round-off noise in systems with the aforementioned control-flow structures. We show the good accuracy of our approach, which in some case studies with non-linear operators shows a 0.04 % deviation respect to the simulation-based reference values. A known drawback of the techniques based on extensions of intervals is the combinatorial explosion of terms as the size of the targeted systems grows, which leads to scalability problems. To address this issue we present a clustered noise injection technique that groups the signals in the system, introduces the noise terms in each group independently and then combines the results at the end. In this way, the number of noise sources in the system at a given time is controlled and, because of this, the combinato rial explosion is minimized. We also present a multi-way partitioning algorithm aimed at minimizing the deviation of the results due to the loss of correlation between noise terms, in order to keep the results as accurate as possible. This Ph.D. Thesis also covers the development of methodologies for word-length optimization based on Monte-Carlo simulations in reasonable times. We do so by presenting two novel techniques that explore the reduction of the execution times approaching the problem in two different ways: First, the interpolative method applies a simple but precise interpolator to estimate the sensitivity of each signal, which is later used to guide the optimization effort. Second, the incremental method revolves on the fact that, although we strictly need to guarantee a certain confidence level in the simulations for the final results of the optimization process, we can do it with more relaxed levels, which in turn implies using a considerably smaller amount of samples, in the initial stages of the process, when we are still far from the optimized solution. Through these two approaches we demonstrate that the execution time of classical greedy techniques can be accelerated by factors of up to ×240 for small/medium sized problems. Finally, this book introduces HOPLITE, an automated, flexible and modular framework for quantization that includes the implementation of the previous techniques and is provided for public access. The aim is to offer a common ground for developers and researches for prototyping and verifying new techniques for system modelling and word-length optimization easily. We describe its work flow, justifying the taken design decisions, explain its public API and we do a step-by-step demonstration of its execution. We also show, through an example, the way new extensions to the flow should be connected to the existing interfaces in order to expand and improve the capabilities of HOPLITE.
Resumo:
MLS-based identification of nonlinear systems is largely affected by deviations in the excitation signal amenable to the combined effect of DC-offset and an arbitrary gain. These induce orthogonality loss in the MLS filter bank output, thus invalidating the underlying identification construction. In this paper we present a correction algorithm to derive the corrected Volterra kernels from the biased estimations provided by the standard MLS-based procedure.
Resumo:
In this paper, a fuzzy based Variable Structure Control (VSC) with guaranteed stability is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. The main contribution of this work is that, firstly, new functions for chattering reduction and error convergence without sacrificing invariant properties are proposed, which is considered the main drawback of the VSC control. Secondly, the global stability of the controlled system is guaranteed.The well known weighting parameters approach, is used in this paper to optimize local and global approximation and modeling capability of T-S fuzzy model.A one link robot is chosen as a nonlinear unstable system to evaluate the robustness, effectiveness and remarkable performance of optimization approach and the high accuracy obtained in approximating nonlinear systems in comparison with the original T-S model. Simulation results indicate the potential and generality of the algorithm. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved with the proposed FLC-VSC controller. The effectiveness of the proposed controller is proven in front of disturbances and noise effects.
Resumo:
In this paper, a fuzzy feedback linearization is used to control nonlinear systems described by Takagi-Suengo (T-S) fuzzy systems. In this work, an optimal controller is designed using the linear quadratic regulator (LQR). The well known weighting parameters approach is applied to optimize local and global approximation and modelling capability of T-S fuzzy model to improve the choice of the performance index and minimize it. The approach used here can be considered as a generalized version of T-S method. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the proposed optimal LQR algorithm.
Resumo:
La presente Tesis analiza y desarrolla metodología específica que permite la caracterización de sistemas de transmisión acústicos basados en el fenómeno del array paramétrico. Este tipo de estructuras es considerado como uno de los sistemas más representativos de la acústica no lineal con amplias posibilidades tecnológicas. Los arrays paramétricos aprovechan la no linealidad del medio aéreo para obtener en recepción señales en el margen sónico a partir de señales ultrasónicas en emisión. Por desgracia, este procedimiento implica que la señal transmitida y la recibida guardan una relación compleja, que incluye una fuerte ecualización así como una distorsión apreciable por el oyente. Este hecho reduce claramente la posibilidad de obtener sistemas acústicos de gran fidelidad. Hasta ahora, los esfuerzos tecnológicos dirigidos al diseño de sistemas comerciales han tratado de paliar esta falta de fidelidad mediante técnicas de preprocesado fuertemente dependientes de los modelos físicos teóricos. Estos están basados en la ecuación de propagación de onda no lineal. En esta Tesis se propone un nuevo enfoque: la obtención de una representación completa del sistema mediante series de Volterra que permita inferir un sistema de compensación computacionalmente ligero y fiable. La dificultad que entraña la correcta extracción de esta representación obliga a desarrollar una metodología completa de identificación adaptada a este tipo de estructuras. Así, a la hora de aplicar métodos de identificación se hace indispensable la determinación de ciertas características iniciales que favorezcan la parametrización del sistema. En esta Tesis se propone una metodología propia que extrae estas condiciones iniciales. Con estos datos, nos encontramos en disposición de plantear un sistema completo de identificación no lineal basado en señales pseudoaleatorias, que aumenta la fiabilidad de la descripción del sistema, posibilitando tanto la inferencia de la estructura basada en bloques subyacente, como el diseño de mecanismos de compensación adecuados. A su vez, en este escenario concreto en el que intervienen procesos de modulación, factores como el punto de trabajo o las características físicas del transductor, hacen inviables los algoritmos de caracterización habituales. Incluyendo el método de identificación propuesto. Con el fin de eliminar esta problemática se propone una serie de nuevos algoritmos de corrección que permiten la aplicación de la caracterización. Las capacidades de estos nuevos algoritmos se pondrán a prueba sobre un prototipo físico, diseñado a tal efecto. Para ello, se propondrán la metodología y los mecanismos de instrumentación necesarios para llevar a cabo el diseño, la identificación del sistema y su posible corrección, todo ello mediante técnicas de procesado digital previas al sistema de transducción. Los algoritmos se evaluarán en términos de error de modelado a partir de la señal de salida del sistema real frente a la salida sintetizada a partir del modelo estimado. Esta estrategia asegura la posibilidad de aplicar técnicas de compensación ya que éstas son sensibles a errores de estima en módulo y fase. La calidad del sistema final se evaluará en términos de fase, coloración y distorsión no lineal mediante un test propuesto a lo largo de este discurso, como paso previo a una futura evaluación subjetiva. ABSTRACT This Thesis presents a specific methodology for the characterization of acoustic transmission systems based on the parametric array phenomenon. These structures are well-known representatives of the nonlinear acoustics field and display large technological opportunities. Parametric arrays exploit the nonlinear behavior of air to obtain sonic signals at the receptors’side, which were generated within the ultrasonic range. The underlying physical process redunds in a complex relationship between the transmitted and received signals. This includes both a strong equalization and an appreciable distortion for a human listener. High fidelity, acoustic equipment based on this phenomenon is therefore difficult to design. Until recently, efforts devoted to this enterprise have focused in fidelity enhancement based on physically-informed, pre-processing schemes. These derive directly from the nonlinear form of the wave equation. However, online limited enhancement has been achieved. In this Thesis we propose a novel approach: the evaluation of a complete representation of the system through its projection onto the Volterra series, which allows the posterior inference of a computationally light and reliable compensation scheme. The main difficulty in the derivation of such representation strives from the need of a complete identification methodology, suitable for this particular type of structures. As an example, whenever identification techniques are involved, we require preliminary estimates on certain parameters that contribute to the correct parameterization of the system. In this Thesis we propose a methodology to derive such initial values from simple measures. Once these information is made available, a complete identification scheme is required for nonlinear systems based on pseudorandom signals. These contribute to the robustness and fidelity of the resulting model, and facilitate both the inference of the underlying structure, which we subdivide into a simple block-oriented construction, and the design of the corresponding compensation structure. In a scenario such as this where frequency modulations occur, one must control exogenous factors such as devices’ operation point and the physical properties of the transducer. These may conflict with the principia behind the standard identification procedures, as it is the case. With this idea in mind, the Thesis includes a series of novel correction algorithms that facilitate the application of the characterization results onto the system compensation. The proposed algorithms are tested on a prototype that was designed and built for this purpose. The methodology and instrumentation required for its design, the identification of the overall acoustic system and its correction are all based on signal processing techniques, focusing on the system front-end, i.e. prior to transduction. Results are evaluated in terms of input-output modelling error, considering a synthetic construction of the system. This criterion ensures that compensation techniques may actually be introduced, since these are highly sensible to estimation errors both on the envelope and the phase of the signals involved. Finally, the quality of the overall system will be evaluated in terms of phase, spectral color and nonlinear distortion; by means of a test protocol specifically devised for this Thesis, as a prior step for a future, subjective quality evaluation.
Resumo:
Dentro de las técnicas de control de procesos no lineales, los controladores de estructura variable con modos deslizantes (VSC-SM en sus siglas en inglés) han demostrado ser una solución robusta, por lo cual han sido ampliamente estudiados en las cuatro últimas décadas. Desde los años ochenta se han presentado varios trabajos enfocados a especificar controladores VSC aplicados a sistemas de tiempo discreto (DVSC), siendo uno de los mayores intereses de análisis obtener las mismas prestaciones de robustez e invarianza de los controladores VSC-SM. El objetivo principal del trabajo de Tesis Doctoral consiste en estudiar, analizar y proponer unos esquemas de diseño de controladores DVSC en procesos multivariable tanto lineales como no lineales. De dicho estudio se propone una nueva filosofía de diseño de superficies deslizantes estables donde se han considerado aspectos hasta ahora no estudiados en el uso de DVSC-SM como son las limitaciones físicas de los actuadores y la dinámica deslizante no ideal. Lo más novedoso es 1) la propuesta de una nueva metodología de diseño de superficies deslizantes aplicadas a sistemas MIMO lineales y la extensión del mismo al caso de sistemas multivariables no lineales y 2) la definición de una nueva ley de alcance y de una ley de control robusta aplicada a sistemas MIMO, tanto lineales como no lineales, incluyendo un esquema de reducción de chattering. Finalmente, con el fin de ilustrar la eficiencia de los esquemas presentados, se incluyen ejemplos numéricos relacionados con el tema tratado en cada uno de los capítulos de la memoria. ABSTRACT Over the last four decades, variable structure controllers with sliding mode (VSC-SM) have been extensively studied, demonstrating to be a robust solution among robust nonlinear processes control techniques. Since the late 80s, several research works have been focused on the application of VSC controllers applied to discrete time or sampled data systems, which are known as DVSC-SM, where the most extensive source of analysis has been devoted to the robustness and invariance properties of VSC-SM controllers when applied to discrete systems. The main aim of this doctoral thesis work is to study, analyze and propose a design scheme of DVSC-SM controllers for lineal and nonlinear multivariable discrete time processes. For this purpose, a new design philosophy is proposed, where various design features have been considered that have not been analyzed in DVSC design approaches. Among them, the physical limitations and the nonideal dynamic sliding mode dynamics. The most innovative aspect is the inclusion of a new design methodology applied to lineal sliding surfaces MIMO systems and the extension to nonlinear multivariable systems, in addition to a new robust control law applied to lineal and nonlinear MIMO systems, including a chattering reduction scheme. Finally, to illustrate the efficiency of the proposed schemes, several numerical examples applied to lineal and nonlinear systems are included.
Resumo:
n this work, a mathematical unifying framework for designing new fault detection schemes in nonlinear stochastic continuous-time dynamical systems is developed. These schemes are based on a stochastic process, called the residual, which reflects the system behavior and whose changes are to be detected. A quickest detection scheme for the residual is proposed, which is based on the computed likelihood ratios for time-varying statistical changes in the Ornstein–Uhlenbeck process. Several expressions are provided, depending on a priori knowledge of the fault, which can be employed in a proposed CUSUM-type approximated scheme. This general setting gathers different existing fault detection schemes within a unifying framework, and allows for the definition of new ones. A comparative simulation example illustrates the behavior of the proposed schemes.
Resumo:
In this paper, several computational schemes are presented for the optimal tuning of the global behavior of nonlinear dynamical sys- tems. Specifically, the maximization of the size of domains of attraction associated with invariants in parametrized dynamical sys- tems is addressed. Cell Mapping (CM) tech- niques are used to estimate the size of the domains, and such size is then maximized via different optimization tools. First, a ge- netic algorithm is tested whose performance shows to be good for determining global maxima at the expense of high computa- tional cost. Secondly, an iterative scheme based on a Stochastic Approximation proce- dure (the Kiefer-Wolfowitz algorithm) is eval- uated showing acceptable performance at low cost. Finally, several schemes combining neu- ral network based estimations and optimiza- tion procedures are addressed with promising results. The performance of the methods is illus- trated with two applications: first on the well-known van der Pol equation with stan- dard parametrization, and second the tuning of a controller for saturated systems.
Resumo:
In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.
Resumo:
The aim of this study was to evaluate the sustainability of farm irrigation systems in the Cébalat district in northern Tunisia. It addressed the challenging topic of sustainable agriculture through a bio-economic approach linking a biophysical model to an economic optimisation model. A crop growth simulation model (CropSyst) was used to build a database to determine the relationships between agricultural practices, crop yields and environmental effects (salt accumulation in soil and leaching of nitrates) in a context of high climatic variability. The database was then fed into a recursive stochastic model set for a 10-year plan that allowed analysing the effects of cropping patterns on farm income, salt accumulation and nitrate leaching. We assumed that the long-term sustainability of soil productivity might be in conflict with farm profitability in the short-term. Assuming a discount rate of 10% (for the base scenario), the model closely reproduced the current system and allowed to predict the degradation of soil quality due to long-term salt accumulation. The results showed that there was more accumulation of salt in the soil for the base scenario than for the alternative scenario (discount rate of 0%). This result was induced by applying a higher quantity of water per hectare for the alternative as compared to a base scenario. The results also showed that nitrogen leaching is very low for the two discount rates and all climate scenarios. In conclusion, the results show that the difference in farm income between the alternative and base scenarios increases over time to attain 45% after 10 years.