21 resultados para stereo-immersive VR

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estudios recientes promueven la integración de estímulos multisensoriales en activos multimedia con el fin de mejorar la experiencia de usuario mediante la estimulación de nuevos sentidos, más allá de la tradicional experiencia audiovisual. Del mismo modo, varios trabajos proponen la introducción de componentes de interacción capaces de complementar con nuevas características, funcionalidades y/o información la experiencia multimedia. Efectos sensoriales basados en el uso de nuevas técnicas de audio, olores, viento, vibraciones y control de la iluminación, han demostrado tener un impacto favorable en la sensación de Presencia, en el disfrute de la experiencia multimedia y en la calidad, relevancia y realismo de la misma percibidos por el usuario. Asimismo, los servicios basados en dos pantallas y la manipulación directa de (elementos en) la escena de video tienen el potencial de mejorar la comprensión, la concentración y la implicación proactiva del usuario en la experiencia multimedia. El deporte se encuentra entre los géneros con mayor potencial para integrar y explotar éstas soluciones tecnológicas. Trabajos previos han demostrado asimismo la viabilidad técnica de integrar éstas tecnologías con los estándares actualmente adoptados a lo largo de toda la cadena de transmisión de televisión. De este modo, los sistemas multimedia enriquecidos con efectos sensoriales, los servicios interactivos multiplataforma y un mayor control del usuario sobre la escena de vídeo emergen como nuevas formas de llevar la multimedia immersiva e interactiva al mercado de consumo de forma no disruptiva. Sin embargo, existen numerosas interrogantes relativas a los efectos sensoriales y/o soluciones interactivas más adecuadas para complementar un contenido audiovisual determinado o a la mejor manera de de integrar y combinar dichos componentes para mejorar la experiencia de usuario de un segmento de audiencia objetivo. Además, la evidencia científica sobre el impacto de factores humanos en la experiencia de usuario con estas nuevas formas de immersión e interacción en el contexto multimedia es aún insuficiente y en ocasiones, contradictoria. Así, el papel de éstos factores en el potencial de adopción de éstas tecnologías ha sido amplia-mente ignorado. La presente tesis analiza el impacto del audio binaural, efectos sensoriales (de iluminación y olfativos), interacción con objetos 3D integrados en la escena de vídeo e interacción con contenido adicional utilizando una segunda pantalla en la experiencia de usuario con contenidos de deporte. La posible influencia de dichos componentes en las variables dependientes se explora tanto a nivel global (efecto promedio) como en función de las características de los usuarios (efectos heterogéneos). Para ello, se ha llevado a cabo un experimento con usuarios orientado a explorar la influencia de éstos componentes immersivos e interactivos en dos grandes dimensiones de la experiencia multimedia: calidad y Presencia. La calidad de la experiencia multimedia se analiza en términos de las posibles variaciones asociadas a la calidad global y a la calidad del contenido, la imagen, el audio, los efectos sensoriales, la interacción con objetos 3D y la interacción con la segunda pantalla. El posible impacto en la Presencia considera dos de las dimensiones definidas por el cuestionario ITC-SOPI: Presencia Espacial (Spatial Presence) e Implicación (Engagement). Por último, los individuos son caracterizados teniendo en cuenta los siguientes atributos afectivos, cognitivos y conductuales: preferencias y hábitos en relación con el contenido, grado de conocimiento de las tecnologías integradas en el sistema, tendencia a involucrarse emocionalmente, tendencia a concentrarse en una actividad bloqueando estímulos externos y los cinco grandes rasgos de la personalidad: extroversión, amabilidad, responsabilidad, inestabilidad emocional y apertura a nuevas experiencias. A nivel global, nuestro estudio revela que los participantes prefieren el audio binaural frente al sistema estéreo y que los efectos sensoriales generan un aumento significativo del nivel de Presencia Espacial percibido por los usuarios. Además, las manipulaciones experimentales realizadas permitieron identificar una gran variedad de efectos heterogéneos. Un resultado interesante es que dichos efectos no se encuentran distribuidos de forma equitativa entre las medidas de calidad y Presencia. Nuestros datos revelan un impacto generalizado del audio binaural en la mayoría de las medidas de calidad y Presencia analizadas. En cambio, la influencia de los efectos sensoriales y de la interacción con la segunda pantalla se concentran en las medidas de Presencia y calidad, respectivamente. La magnitud de los efectos heterogéneos identificados está modulada por las siguientes características personales: preferencias en relación con el contenido, frecuencia con la que el usuario suele ver contenido similar, conocimiento de las tecnologías integradas en el demostrador, sexo, tendencia a involucrarse emocionalmente, tendencia a a concentrarse en una actividad bloqueando estímulos externos y niveles de amabilidad, responsabilidad y apertura a nuevas experiencias. Las características personales consideradas en nuestro experimento explicaron la mayor parte de la variación en las variables dependientes, confirmando así el importante (y frecuentemente ignorado) papel de las diferencias individuales en la experiencia multimedia. Entre las características de los usuarios con un impacto más generalizado se encuentran las preferencias en relación con el contenido, el grado de conocimiento de las tecnologías integradas en el sistema y la tendencia a involucrarse emocionalmente. En particular, los primeros dos factores parecen generar un conflicto de atención hacia el contenido versus las características/elementos técnicos del sistema, respectivamente. Asimismo, la experiencia multimedia de los fans del fútbol parece estar modulada por procesos emociona-les, mientras que para los no-fans predominan los procesos cognitivos, en particular aquellos directamente relacionados con la percepción de calidad. Abstract Recent studies encourage the integration of multi-sensorial stimuli into multimedia assets to enhance the user experience by stimulating other senses beyond sight and hearing. Similarly, the introduction of multi-modal interaction components complementing with new features, functionalities and/or information the multimedia experience is promoted. Sensory effects as odor, wind, vibration and light effects, as well as an enhanced audio quality, have been found to favour media enjoyment and to have a positive influence on the sense of Presence and on the perceived quality, relevance and reality of a multimedia experience. Two-screen services and a direct manipulation of (elements in) the video scene have the potential to enhance user comprehension, engagement and proactive involvement of/in the media experience. Sports is among the genres that could benefit the most from these solutions. Previous works have demonstrated the technical feasibility of implementing and deploying end-to-end solutions integrating these technologies into legacy systems. Thus, sensorially-enhanced media, two-screen services and an increased user control over the displayed scene emerge as means to deliver a new form of immersive and interactive media experiences to the mass market in a non-disruptive manner. However, many questions remain concerning issues as the specific interactive solutions or sensory effects that can better complement a given audiovisual content or the best way in which to integrate and combine them to enhance the user experience of a target audience segment. Furthermore, scientific evidence on the impact of human factors on the user experience with these new forms of immersive and interactive media is still insufficient and sometimes, contradictory. Thus, the role of these factors on the potential adoption of these technologies has been widely ignored. This thesis analyzes the impact of binaural audio, sensory (light and olfactory) effects, interaction with 3D objects integrated into the video scene and interaction with additional content using a second screen on the sports media experience. The potential influence of these components on the dependent variables is explored both at the overall level (average effect) and as a function of users’ characteristics (heterogeneous effects). To these aims, we conducted an experimental study exploring the influence of these immersive and interactive elements on the quality and Presence dimensions of the media experience. Along the quality dimension, we look for possible variations on the quality scores as-signed to the overall media experience and to the media components content, image, audio, sensory effects, interaction with 3D objects and interaction using the tablet device. The potential impact on Presence is analyzed by looking at two of the four dimensions defined by the ITC-SOPI questionnaire, namely Spatial Presence and Engagement. The users’ characteristics considered encompass the following personal affective, cognitive and behavioral attributes: preferences and habits in relation to the content, knowledge of the involved technologies, tendency to get emotionally involved and tendency to get absorbed in an activity and block out external distractors and the big five personality traits extraversion, agreeableness, conscientiousness, neuroticism and openness to experience. At the overall level, we found that participants preferred binaural audio than standard stereo audio and that sensory effects increase significantly the level of Spatial Presence. Several heterogeneous effects were also revealed as a result of our experimental manipulations. Interestingly, these effects were not equally distributed across the quality and Presence measures analyzed. Whereas binaural audio was foud to have an influence on the majority of the quality and Presence measures considered, the effects of sensory effects and of interaction with additional content through the tablet device concentrate mainly on the dimensions of Presence and on quality measures, respectively. The magnitude of these effects was modulated by individual’s characteristics, such as: preferences in relation to the content, frequency of viewing similar content, knowledge of involved technologies, gender, tendency to get emotionally involved, tendency to absorption and levels of agreeableness, conscientiousness and openness to experience. The personal characteristics collected in our experiment explained most of the variation in the dependent variables, confirming the frequently neglected role of individual differences on the media experience. Preferences in relation to the content, knowledge of involved technologies and tendency to get emotionally involved were among the user variables with the most generalized influence. In particular, the former two features seem to present a conflict in the allocation of attentional resources towards the media content versus the technical features of the system, respectively. Additionally, football fans’ experience seems to be modulated by emotional processes whereas for not fans, cognitive processes (and in particular those related to quality judgment) prevail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An image processing observational technique for the stereoscopic reconstruction of the wave form of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired wave form is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of the space-time dynamics of oceanic sea states exploiting stereo imaging techniques. In particular, a novel Wave Acquisition Stereo System (WASS) has been developed and deployed at the oceanographic tower Acqua Alta in the Northern Adriatic Sea, off the Venice coast in Italy. The analysis of WASS video measurements yields accurate estimates of the oceanic sea state dynamics, the associated directional spectra and wave surface statistics that agree well with theoretical models. Finally, we show that a space-time extreme, defined as the expected largest surface wave height over an area, is considerably larger than the maximum crest observed in time at a point, in agreement with theoretical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stereo video techniques are effective for estimating the space-time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. Classical epipolar techniques and modern variational methods are reviewed to reconstruct the sea surface from the stereo pairs sequentially in time. Current improvements of the variational methods are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a remote sensing observational method for the measurement of the spatio-temporal dynamics of ocean waves. Variational techniques are used to recover a coherent space-time reconstruction of oceanic sea states given stereo video imagery. The stereoscopic reconstruction problem is expressed in a variational optimization framework. There, we design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal regularizers. A nested iterative scheme is devised to numerically solve, via 3-D multigrid methods, the system of partial differential equations resulting from the optimality condition of the energy functional. The output of our method is the coherent, simultaneous estimation of the wave surface height and radiance at multiple snapshots. We demonstrate our algorithm on real data collected off-shore. Statistical and spectral analysis are performed. Comparison with respect to an existing sequential method is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although 3DTV has led the evolution of television market, its delivery by broadcast networks is still small. Now, 3DTV transmis-sions are usually done by combining both views into one common frame (side by side) to be able to use standard HDTV transmission equipment. Today, orthogonal subsampling is mostly used, but other alternatives will appear soon. Here, different subsampling schemes for both progressive and interlaced 3DTV are considered. For each possible scheme, its pre-served frequency content is analyzed and a simple interpolation filter is designed. The analysis is carried out for progressive and interlaced video and the designed filters are applied on different sequences, showing the advantages and disadvantages of the different options

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a novel remote sensing technique for the observation of waves on the ocean surface. Our method infers the 3-D waveform and radiance of oceanic sea states via a variational stereo imagery formulation. In this setting, the shape and radiance of the wave surface are given by minimizers of a composite energy functional that combines a photometric matching term along with regularization terms involving the smoothness of the unknowns. The desired ocean surface shape and radiance are the solution of a system of coupled partial differential equations derived from the optimality conditions of the energy functional. The proposed method is naturally extended to study the spatiotemporal dynamics of ocean waves and applied to three sets of stereo video data. Statistical and spectral analysis are carried out. Our results provide evidence that the observed omnidirectional wavenumber spectrum S(k) decays as k-2.5 is in agreement with Zakharov's theory (1999). Furthermore, the 3-D spectrum of the reconstructed wave surface is exploited to estimate wave dispersion and currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These slides present several 3-D reconstruction methods to obtain the geometric structure of a scene that is viewed by multiple cameras. We focus on the combination of the geometric modeling in the image formation process with the use of standard optimization tools to estimate the characteristic parameters that describe the geometry of the 3-D scene. In particular, linear, non-linear and robust methods to estimate the monocular and epipolar geometry are introduced as cornerstones to generate 3-D reconstructions with multiple cameras. Some examples of systems that use this constructive strategy are Bundler, PhotoSynth, VideoSurfing, etc., which are able to obtain 3-D reconstructions with several hundreds or thousands of cameras. En esta presentación se tratan varios métodos de reconstrucción 3-D para la obtención de la estructura geométrica de una escena que es visualizada por varias cámaras. Se enfatiza la combinación de modelado geométrico del proceso de formación de la imagen con el uso de herramientas estándar de optimización para estimar los parámetros característicos que describen la geometría de la escena 3-D. En concreto, se presentan métodos de estimación lineales, no lineales y robustos de las geometrías monocular y epipolar como punto de partida para generar reconstrucciones con tres o más cámaras. Algunos ejemplos de sistemas que utilizan este enfoque constructivo son Bundler, PhotoSynth, VideoSurfing, etc., los cuales, en la práctica pueden llegar a reconstruir una escena con varios cientos o miles de cámaras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Surgical simulators are currently essential within any laparoscopic training program because they provide a low-stakes, reproducible and reliable environment to acquire basic skills. The purpose of this study is to determine the training learning curve based on different metrics corresponding to five tasks included in SINERGIA laparoscopic virtual reality simulator. Methods: Thirty medical students without surgical experience participated in the study. Five tasks of SINERGIA were included: Coordination, Navigation, Navigation and touch, Accurate grasping and Coordinated pulling. Each participant was trained in SINERGIA. This training consisted of eight sessions (R1–R8) of the five mentioned tasks and was carried out in two consecutive days with four sessions per day. A statistical analysis was made, and the results of R1, R4 and R8 were pair-wise compared with Wilcoxon signed-rank test. Significance is considered at P value <0.005. Results: In total, 84.38% of the metrics provided by SINERGIA and included in this study show significant differences when comparing R1 and R8. Metrics are mostly improved in the first session of training (75.00% when R1 and R4 are compared vs. 37.50% when R4 and R8 are compared). In tasks Coordination and Navigation and touch, all metrics are improved. On the other hand, Navigation just improves 60% of the analyzed metrics. Most learning curves show an improvement with better results in the fulfillment of the different tasks. Conclusions: Learning curves of metrics that assess the basic psychomotor laparoscopic skills acquired in SINERGIA virtual reality simulator show a faster learning rate during the first part of the training. Nevertheless, eight repetitions of the tasks are not enough to acquire all psychomotor skills that can be trained in SINERGIA. Therefore, and based on these results together with previous works, SINERGIA could be used as training tool with a properly designed training program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immersion and interaction have been identified as key factors influencing the quality of experience in stereoscopic video systems. The work presented here aims to create a new paradigm for 3D Multimedia consumption exploiting these factors in order to increase user involvement. We use a 5-sided CAVETM environment to support 3D panoramic video reproduction, real-time insertion of synthetic objects into the three-dimensional scene and real-time user interaction with the inserted elements. In this paper we describe our system requirements, functionalities, conceptual design and preliminary implementation results emphasizing the most relevant challenges accomplished. The focus is on three main issues: the generation of stereoscopic video panoramas; the synchronous reproduction of immersive 3D video across multiple screens; and, the real-time insertion algorithm implemented for the integration of synthetic objects into the stereoscopic video. These results have been successfully integrated into the graphic engine managing the operation of the CAVETM infrastructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is twofold: first, to develop a process to automatically create parametric models of the aorta that can adapt to any possible intraoperative deformation of the vessel. Second, it intends to provide the tools needed to perform this deformation in real time, by means of a non-rigid registration method. This dynamically deformable model will later be used in a VR-based surgery guidance system for aortic catheterism procedures, showing the vessel changes in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immersion and interaction have been identified as key factors influencing the quality of experience in stereoscopic video systems. An experimental prototype designed to explore the influence of these factors in 3D video applications is described here1. The focus is on the real-time insertion algorithm of new 3D models into the original video streams. Using this algorithm, our prototype is aimed to explore a new interaction paradigm ? similar to the augmented reality approach ? with 3D video applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 10 m. Classical epipolar techniques and modern variational methods are reviewed to reconstruct the sea surface from the stereo pairs sequentially in time. The statistical and spectral properties of the resulting observed waves are analyzed. Current improvements of the variational methods are discussed as future lines of research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss future lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of aerial imagery, one of the first steps toward a coherent processing of the information contained in multiple images is geo-registration, which consists in assigning geographic 3D coordinates to the pixels of the image. This enables accurate alignment and geo-positioning of multiple images, detection of moving objects and fusion of data acquired from multiple sensors. To solve this problem there are different approaches that require, in addition to a precise characterization of the camera sensor, high resolution referenced images or terrain elevation models, which are usually not publicly available or out of date. Building upon the idea of developing technology that does not need a reference terrain elevation model, we propose a geo-registration technique that applies variational methods to obtain a dense and coherent surface elevation model that is used to replace the reference model. The surface elevation model is built by interpolation of scattered 3D points, which are obtained in a two-step process following a classical stereo pipeline: first, coherent disparity maps between image pairs of a video sequence are estimated and then image point correspondences are back-projected. The proposed variational method enforces continuity of the disparity map not only along epipolar lines (as done by previous geo-registration techniques) but also across them, in the full 2D image domain. In the experiments, aerial images from synthetic video sequences have been used to validate the proposed technique.