11 resultados para specific leaf area

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the areas (number of pixels) corresponding to seven different classes (Grapes, Wood, Background, and four classes of Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of representative pixels for every class in order to induce the clustering around them. The proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) images, acquired in a commercial vineyard located in La Rioja (Spain), after several defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no artificial illumination. The segmentation results showed a performance of 92% for leaves and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which operates with a simple image acquisition setup and guarantees the right number and kind of pixel classes, has shown to be suitable and robust enough to provide valuable information for vineyard management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canopy characterization is essential for describing the interaction of a crop with its environment. The goal of this work was to determine the relationship between leaf area index (LAI) and ground cover (GC) in a grass, a legume and a crucifer crop, and to assess the feasibility of using these relationships as well as LAI-2000 readings to estimate LAI. Twelve plots were sown with either barley (Hordeum vulgare L.), vetch (Vicia sativa L.), or rape (Brassica napus L.). On 10 sampling dates the LAI (both direct and LAI-2000 estimations), fraction intercepted of photosynthetically active radiation (FIPAR) and GC were measured. Linear and quadratic models fitted to the relationship between the GC and LAI for all of the crops, but they reached a plateau in the grass when the LAI mayor que 4. Before reaching full cover, the slope of the linear relationship between both variables was within the range of 0.025 to 0.030. The LAI-2000 readings were linearly correlated with the LAI but they tended to overestimation. Corrections based on the clumping effect reduced the root mean square error of the estimated LAI from the LAI-2000 readings from 1.2 to less than 0.50 for the crucifer and the legume, but were not effective for barley.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El concepto tradicional de reglas de ensamblaje refleja la idea de que las especies no co-ocurren al azar sino que están restringidos en su co-ocurrencia por la competencia interespecífica o por un filtrado ambiental. En está tesis abordé la importancia de los procesos que determinan el ensamble de la comunidad en la estructuración de los Bosques Secos en el Sur del Ecuador. Este estudio se realizó en la región biogeográfica Tumbesina, donde se encuentra la mayor concentración de bosques secos tropicales bien conservados del sur de Ecuador, y que constituyen una de las áreas de endemismo más importantes del mundo. El clima se caracteriza por una estación seca que va desde mayo a diciembre y una estación lluviosa de enero a abril, su temperatura anual varía entre 20°C y 26°C y una precipitación promedio anual entre 300 y 700 mm. Mi primer tema fue orientado a evaluar si la distribución de los rasgos funcionales a nivel comunitario es compatible con la existencia de un filtro ambiental (filtrado del hábitat) o con la existencia de un proceso de limitación de la semejanza funcional impuesta por la competencia inter-específica entre 58 especies de plantas leñosas repartidas en 109 parcelas (10x50m). Para ello, se analizó la distribución de los valores de cinco rasgos funcionales (altura máxima, densidad de la madera, área foliar específica, tamaño de la hoja y de masa de la semilla), resumida mediante varios estadísticos (rango, varianza, kurtosis y la desviación estándar de la distribución de distancias funcionales a la especies más próxima) y se comparó con la distribución esperada bajo un modelo nulo con ausencia de competencia. Los resultados obtenidos apoyan que tanto el filtrado ambiental como la limitación a la semejanza afectan el ensamble de las comunidades vegetales de los bosques secos Tumbesinos. Un segundo tema fue identificar si la diversidad funcional está condicionada por los gradientes ambientales, y en concreto si disminuye en los ambientes más estresantes a causa del filtrado ambiental, y si por el contrario aumenta en los ambientes más benignos donde la competencia se vuelve más importante, teniendo en cuenta las posibles modificaciones a este patrón general a causa de las interacciones de facilitación. Para abordar este estudio analizamos tanto las variaciones en la diversidad funcional (respecto a los de los cinco rasgos funcionales empleados en el primer capítulo de la tesis) como las variaciones de diversidad filogenética a lo largo de un gradiente de estrés climático en los bosques tumbesinos, y se contrastaron frente a las diversidades esperadas bajo un modelo de ensamblaje completamente aleatorio de la comunidad. Los análisis mostraron que tan sólo la diversidad de tamaños foliares siguió el patrón de variación esperado, disminuyendo a medida que aumentó el estrés abiótico mientras que ni el resto de rasgos funcionales ni la diversidad funcional multivariada ni la diversidad filogenética mostraron una variación significativa a lo largo del gradiente ambiental. Un tercer tema fue evaluar si los procesos que organizan la estructura funcional de la comunidad operan a diferentes escalas espaciales. Para ello cartografié todos los árboles y arbustos de más de 5 cm de diámetro en una parcela de 9 Ha de bosque seco y caractericé funcionalmente todas las especies. Dicha parcela fue dividida en subparcelas de diferente tamaño, obteniéndose subparcelas a seis escalas espaciales distintas. Los resultados muestran agregación de estrategias funcionales semejantes a escalas pequeñas, lo que sugiere la existencia bien de filtros ambientales actuando a escala fina o bien de procesos competitivos que igualan la estrategia óptima a dichas escalas. Finalmente con la misma información de la parcela permanente de 9 Ha. Nos propusimos evaluar el efecto y comportamiento de las especies respecto a la organización de la diversidad taxonómica, funcional y filogenética. Para ello utilicé tres funciones sumario espaciales: ISAR- para el nivel taxonómico, IFDAR para el nivel funcional y IPSVAR para el nivel filogenética y las contrastamos frente a modelos nulos que describen la distribución espacial de las especies individuales. Los resultados mostraron que en todas las escalas espaciales consideradas para ISAR, IFDAR y IPSVAR, la mayoría de las especies se comportaron como neutras, es decir, que están rodeados por la riqueza de diversidad semejante a la esperada. Sin embargo, algunas especies aparecieron como acumuladoras de diversidad funcional y filogenética, lo que sugiere su implicación en procesos competitivos de limitación de la semejanza. Una pequeña proporción de las especies apareció como repelente de la diversidad funcional y filogenética, lo que sugiere su implicación en un proceso de filtrado de hábitat. En este estudio pone de relieve cómo el análisis de las dimensiones alternativas de la biodiversidad, como la diversidad funcional y filogenética, puede ayudarnos a entender la co-ocurrencia de especies en diversos ensambles de comunidad. Todos los resultados de este estudio aportan nuevas evidencias de los procesos de ensamblaje de la comunidad de los Bosques Estacionalmente secos y como las variables ambientales y la competencia juegan un papel importante en la estructuración de la comunidad. ABSTRACT The traditional concept of the rules assembly for species communities reflects the idea that species do not co-occur at random but are restricted in their co-occurrence by interspecific competition or an environmental filter. In this thesis, I addressed the importance of the se processes in the assembly of plant communities in the dry forests of southern Ecuador. This study was conducted in the biogeographic region of Tumbesina has the largest concentration of well-conserved tropical dry forests of southern Ecuador, and is recognized as one of the most important areas of endemism in the world. The climate is characterized by a dry season from May to December and a rainy season from January to April. The annual temperature varies between 20 ° C and 26 ° C and an average annual rainfall between 300 and 700 mm. I first assessed whether the distribution of functional traits at the level of the community is compatible with the existence of an environmental filter (imposed by habitat) or the existence of a limitation on functional similarity imposed by interspecific competition. This analysis was conducted for 58 species of woody plants spread over 109 plots of 10 x 50 m. Specifically, I compared the distribution of values of five functional traits (maximum height, wood density, specific leaf area, leaf size and mass of the seed), via selected statistical properties (range, variance, kurtosis and analyzed the standard deviation of the distribution of the closest functional species) distances and compared with a expected distribution under a null model of no competition. The results support that both environmental filtering and a limitation on trait similarity affect the assembly of plant communities in dry forests Tumbesina. My second chapter evaluated whether variation in functional diversity is conditioned by environmental gradients. In particular, I tested whether it decreases in the most stressful environments because of environmental filters, or if, on the contrary, functional diversity is greater in more benign environments where competition becomes more important (notwithstanding possible changes to this general pattern due to facilitation). To address this theme I analyzed changes in both the functional diversity (maximum height, wood density, specific leaf area, leaf size and mass of the seed) and the phylogenetic diversity, along a gradient of climatic stress in Tumbes forests. The observed patterns of variation were contrasted against the diversity expected under a completely random null model of community assembly. Only the diversity of leaf sizes followed the hypothesis decreasing in as trait variation abiotic stress increased, while the other functional traits multivariate functional diversity and phylogenetic diversity no showed significant variation along the environmental gradient. The third theme assess whether the processes that organize the functional structure of the community operate at different spatial scales. To do this I mapped all the trees and shrubs of more than 5 cm in diameter within a plot of 9 hectares of dry forest and functionally classified each species. The plot was divided into subplots of different sizes, obtaining subplots of six different spatial scales. I found aggregation of similar functional strategies at small scales, which may indicate the existence of environmental filters or competitive processes that correspond to the optimal strategy for these fine scales. Finally, with the same information from the permanent plot of 9 ha, I evaluated the effect and behavior of individual species on the organization of the taxonomic, functional and phylogenetic diversity. The analysis comprised three spatial summary functions: ISAR- for taxonomic level analysis, IFDAR for functional level analysis, and IPSVAR for phylogenetic level analysis, in each case the pattern of diversity was contrasted against null models that randomly reallocate describe the spatial distribution of individual species and their traits. For all spatial scales considering ISAR, IFDAR and IPSVAR, most species behaved as neutral, i.e. they are surrounded by the diversity of other traits similar to that expected under a null model. However, some species appeared as accumulator of functional and phylogenetic diversity, suggesting that they may play a role in competitive processes that limiting similarity. A small proportion of the species appeared as repellent of functional and phylogenetic diversity, suggesting their involvement in a process of habitat filtering. These analysis highlights that the analysis of alternative dimensions of biodiversity, such as functional and phylogenetic diversity, can help us understand the co-occurrence of species in the assembly of biotic communities. All results of this study provide further evidence of the processes of assembly of the community of the seasonally dry forests as environmental variables and competition play an important role in structuring the community.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La productividad es un factor importante que influye en la viabilidad económica de un cultivo energético de sauce y maximizarla se convierte en un tema primordial. Esta investigación está directamente relacionada con dicha característica. La productividad varía según los clones cultivados, que pueden ser mejorados y seleccionados genéticamente. Los programas genéticos requieren de una información previa (productividad media en función del porte y número de los tallos, características de las hojas, resistencia a las plagas, etc.) que ayudará a obtener clones más productivos y resistentes. Por ello, nuestra investigación consta de dos estudios: (1) Evaluación de la eficiencia del uso de la luz o LUE (Light Use Efficiency). El incremento de biomasa y la eficiencia del uso de la luz (LUE) fue estudiado en 15 clones del genero Salix durante los meses de junio a septiembre de 2011 en Belleville (Central New York, USA). Los objetivos de este estudio fueron: (1) Evaluar la eficiencia del uso de la luz en la explicación a la variación en la producción de biomasa y (2) Determinar si existen diferencias significativas entre clones evaluando el índice de área foliar (LAI) y algunos componentes de las hojas (N, P, K,…). Se concluye que la variación de biomasa está relacionada con la cantidad de luz interceptada y con la eficiencia de su uso. Dicha información debe de ser transferida para ayudar a mejorar genéticamente los futuros clones a comercializar, con el fin de maximizar la productividad y aumentar la resistencia a plagas. (2) Estimación de biomasa a través de modelos de regresión. Los estudios de investigación relacionados con la productividad requieren estimaciones no destructivas de la biomasa aérea. Sin embargo, el nivel de precisión requerido y la inversión de tiempo son excesivos para operaciones comerciales con grandes extensiones (plantaciones de 10.000 ha). Por esta razón, se estudia el nivel de especificidad (específico, intermedio y general) en la toma de datos de campo sobre los mismos 15 clones (12 de ellos se pueden agrupar en 5 grupos según su genotipo origen) del genero Salix, empleados en el estudio anterior. Para todos los niveles estudiados se observaron diferencias significativas. Pero desde nuestro punto de vista, las diferencias obtenidas no son relevantes. Para validar los modelos finalmente seleccionados se calcularon los porcentajes de error entre la biomasa estimada por los modelos de regresión calculados y la biomasa real obtenida tras los pesajes de biomasa, todo ello se realizó para cada clon según nivel de especificidad. ABSTRACT Productivity is an important factor in the economic viability of a willow crop´s, therefore, maximize it becomes a major factor. This study is directly related to this feature. Productivity, among other factors, may vary depending on different clones, which can be improved and selected genetically. Genetic programs require prior information (average productivity, size and number of stems, leaf characteristics, resistance to pests, etc.) to help you get more productive clones resistant to local pests. Our research consists of two studies: (1) Evaluation of the efficiency of use of light (LUE, Light Use Efficiency). The increase of biomass and light use efficiency (LUE) was tested on 15 clones of the genus Salix during June and September 2011 in Belleville (Central New York, USA). The objectives of this study were: (1) evaluate the light use efficiency and its relationship with the variation in biomass production and (2) determine whether there are significant differences between clones evaluating the leaf area index (LAI) and some traits of the leaves (N, P, K). We studied the correlation with the light use efficiency. It is concluded that the variation of biomass was related to the amount of light intercepted and its efficiency. Such information must be transferred to help improve future genetically clones to market in order to maximize productivity and increase resistance to pests. (2) Estimation of biomass through regression models. Research studies related to productivity estimates require precision and non destructive biomass. However, the level of accuracy required and the investment of time are excessive for large commercial operations with extensions (plantations of 10,000 ha). Precisely for this reason, we study the level of specificity (specific, intermediate and general) in making field data on the same 15 clones (12 of them can be grouped into five groups according to their genotype origin) of the genus Salix, employees in the previous study. For all levels studied some significant differences were observed. But from our practical standpoint, the differences are not relevant. Finally, to validate the selected models, we calculated the percent of bias between estimated biomass (by the regression models) and real biomass obtained after the weighing of biomass, all this process was done for each clone by level of specificity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Los estudios sobre la asignación del carbono en los ecosistemas forestales proporcionan información esencial para la comprensión de las diferencias espaciales y temporales en el ciclo del carbono de tal forma que pueden aportar información a los modelos y, así predecir las posibles respuestas de los bosques a los cambios en el clima. Dentro de este contexto, los bosques Amazónicos desempeñan un papel particularmente importante en el balance global del carbono; no obstante, existen grandes incertidumbres en cuanto a los controles abióticos en las tasas de la producción primaria neta (PPN), la asignación de los productos de la fotosíntesis a los diferentes componentes o compartimentos del ecosistema (aéreo y subterráneo) y, cómo estos componentes de la asignación del carbono responden a eventos climáticos extremos. El objetivo general de esta tesis es analizar los componentes de la asignación del carbono en bosques tropicales maduros sobre suelos contrastantes, que crecen bajo condiciones climáticas similares en dos sitios ubicados en la Amazonia noroccidental (Colombia): el Parque Natural Nacional Amacayacu y la Estación Biológica Zafire. Con este objetivo, realicé mediciones de los componentes de la asignación del carbono (biomasa, productividad primaria neta, y su fraccionamiento) a nivel ecosistémico y de la dinámica forestal (tasas anuales de mortalidad y reclutamiento), a lo largo de ocho años (20042012) en seis parcelas permanentes de 1 hectárea establecidas en cinco tipos de bosques sobre suelos diferentes (arcilloso, franco-arcilloso, franco-arcilloso-arenoso, franco-arenoso y arena-francosa). Toda esta información me permitió abordar preguntas específicas que detallo a continuación. En el Capítulo 2 evalúe la hipótesis de que a medida que aumenta la fertilidad del suelo disminuye la cantidad del carbono asignado a la producción subterránea (raíces finas con diámetro <2 mm). Y para esto, realicé mediciones de la masa y la producción de raíces finas usando dos métodos: (1) el de los cilindros de crecimiento y, (2) el de los cilindros de extracción secuencial. El monitoreo se realizó durante 2.2 años en los bosques con suelos más contrastantes: arcilla y arena-francosa. Encontré diferencias significativas en la masa de raíces finas y su producción entre los bosques y, también con respecto a la profundidad del suelo (010 y 1020 cm). El bosque sobre arena-francosa asignó más carbono a las raíces finas que el bosque sobre arcillas. La producción de raíces finas en el bosque sobre arena-francosa fue dos veces más alta (media ± error estándar = 2.98 ± 0.36 y 3.33 ± 0.69 Mg C ha1 año1, con el método 1 y 2, respectivamente), que para el bosque sobre arcillas, el suelo más fértil (1.51 ± 0.14, método 1, y desde 1.03 ± 0.31 a 1.36 ± 0.23 Mg C ha1 año1, método 2). Del mismo modo, el promedio de la masa de raíces finas fue tres veces mayor en el bosque sobre arena-francosa (5.47 ± 0.17 Mg C ha1) que en el suelo más fértil (de 1.52 ± 0.08 a 1.82 ± 0.09 Mg C ha1). La masa de las raíces finas también mostró un patrón temporal relacionado con la lluvia, mostrando que la producción de raíces finas disminuyó sustancialmente en el período seco del año 2005. Estos resultados sugieren que los recursos del suelo pueden desempeñar un papel importante en los patrones de la asignación del carbono entre los componentes aéreo y subterráneo de los bosques tropicales; y que el suelo no sólo influye en las diferencias en la masa de raíces finas y su producción, sino que también, en conjunto con la lluvia, sobre la estacionalidad de la producción. En el Capítulo 3 estimé y analicé los tres componentes de la asignación del carbono a nivel del ecosistema: la biomasa, la productividad primaria neta PPN, y su fraccionamiento, en los mismos bosques del Capítulo 2 (el bosque sobre arcillas y el bosque sobre arena-francosa). Encontré diferencias significativas en los patrones de la asignación del carbono entre los bosques; el bosque sobre arcillas presentó una mayor biomasa total y aérea, así como una PPN, que el bosque sobre arena-francosa. Sin embargo, la diferencia entre los dos bosques en términos de la productividad primaria neta total fue menor en comparación con las diferencias entre la biomasa total de los bosques, como consecuencia de las diferentes estrategias en la asignación del carbono a los componentes aéreo y subterráneo del bosque. La proporción o fracción de la PPN asignada a la nueva producción de follaje fue relativamente similar entre los dos bosques. Nuestros resultados de los incrementos de la biomasa aérea sugieren una posible compensación entre la asignación del carbono al crecimiento de las raíces finas versus el de la madera, a diferencia de la compensación comúnmente asumida entre la parte aérea y la subterránea en general. A pesar de estas diferencias entre los bosques en términos de los componentes de la asignación del carbono, el índice de área foliar fue relativamente similar entre ellos, lo que sugiere que el índice de área foliar es más un indicador de la PPN total que de la asignación de carbono entre componentes. En el Capítulo 4 evalué la variación espacial y temporal de los componentes de la asignación del carbono y la dinámica forestal de cinco tipos e bosques amazónicos y sus respuestas a fluctuaciones en la precipitación, lo cual es completamente relevante en el ciclo global del carbono y los procesos biogeoquímicos en general. Estas variaciones son así mismo importantes para evaluar los efectos de la sequía o eventos extremos sobre la dinámica natural de los bosques amazónicos. Evalué la variación interanual y la estacionalidad de los componentes de la asignación del carbono y la dinámica forestal durante el periodo 2004−2012, en cinco bosques maduros sobre diferentes suelos (arcilloso, franco-arcilloso, franco-arcilloso-arenoso, franco-arenoso y arena-francosa), todos bajo el mismo régimen local de precipitación en la Amazonia noroccidental (Colombia). Quería examinar sí estos bosques responden de forma similar a las fluctuaciones en la precipitación, tal y como pronostican muchos modelos. Consideré las siguientes preguntas: (i) ¿Existe una correlación entre los componentes de la asignación del carbono y la dinámica forestal con la precipitación? (ii) ¿Existe correlación entre los bosques? (iii) ¿Es el índice de área foliar (LAI) un indicador de las variaciones en la producción aérea o es un reflejo de los cambios en los patrones de la asignación del carbono entre bosques?. En general, la correlación entre los componentes aéreo y subterráneo de la asignación del carbono con la precipitación sugiere que los suelos juegan un papel importante en las diferencias espaciales y temporales de las respuestas de estos bosques a las variaciones en la precipitación. Por un lado, la mayoría de los bosques mostraron que los componentes aéreos de la asignación del carbono son susceptibles a las fluctuaciones en la precipitación; sin embargo, el bosque sobre arena-francosa solamente presentó correlación con la lluvia con el componente subterráneo (raíces finas). Por otra parte, a pesar de que el noroeste Amazónico es considerado sin una estación seca propiamente (definida como <100 mm meses −1), la hojarasca y la masa de raíces finas mostraron una alta variabilidad y estacionalidad, especialmente marcada durante la sequía del 2005. Además, los bosques del grupo de suelos francos mostraron que la hojarasca responde a retrasos en la precipitación, al igual que la masa de raíces finas del bosque sobre arena-francosa. En cuanto a la dinámica forestal, sólo la tasa de mortalidad del bosque sobre arena-francosa estuvo correlacionada con la precipitación (ρ = 0.77, P <0.1). La variabilidad interanual en los incrementos en el tallo y la biomasa de los individuos resalta la importancia de la mortalidad en la variación de los incrementos en la biomasa aérea. Sin embargo, las tasas de mortalidad y las proporciones de individuos muertos por categoría de muerte (en pie, caído de raíz, partido y desaparecido), no mostraron tendencias claras relacionadas con la sequía. Curiosamente, la hojarasca, el incremento en la biomasa aérea y las tasas de reclutamiento mostraron una alta correlación entre los bosques, en particular dentro del grupo de los bosques con suelos francos. Sin embargo, el índice de área foliar estimado para los bosques con suelos más contrastantes (arcilla y arena-francosa), no presentó correlación significativa con la lluvia; no obstante, estuvo muy correlacionado entre bosques; índice de área foliar no reflejó las diferencias en la asignación de los componentes del carbono, y su respuesta a la precipitación en estos bosques. Por último, los bosques estudiados muestran que el noroeste amazónico es susceptible a fenómenos climáticos, contrario a lo propuesto anteriormente debido a la ausencia de una estación seca propiamente dicha. ABSTRACT Studies of carbon allocation in forests provide essential information for understanding spatial and temporal differences in carbon cycling that can inform models and predict possible responses to changes in climate. Amazon forests play a particularly significant role in the global carbon balance, but there are still large uncertainties regarding abiotic controls on the rates of net primary production (NPP) and the allocation of photosynthetic products to different ecosystem components; and how the carbon allocation components of Amazon forests respond to extreme climate events. The overall objective of this thesis is to examine the carbon allocation components in old-growth tropical forests on contrasting soils, and under similar climatic conditions in two sites at the Amacayacu National Natural Park and the Zafire Biological Station, located in the north-western Amazon (Colombia). Measurements of above- and below-ground carbon allocation components (biomass, net primary production, and its partitioning) at the ecosystem level, and dynamics of tree mortality and recruitment were done along eight years (20042012) in six 1-ha plots established in five Amazon forest types on different soils (clay, clay-loam, sandy-clay-loam, sandy-loam and loamy-sand) to address specific questions detailed in the next paragraphs. In Chapter 2, I evaluated the hypothesis that as soil fertility increases the amount of carbon allocated to below-ground production (fine-roots) should decrease. To address this hypothesis the standing crop mass and production of fine-roots (<2 mm) were estimated by two methods: (1) ingrowth cores and, (2) sequential soil coring, during 2.2 years in the most contrasting forests: the clay-soil forest and the loamy-sand forest. We found that the standing crop fine-root mass and its production were significantly different between forests and also between soil depths (0–10 and 10–20 cm). The loamysand forest allocated more carbon to fine-roots than the clay-soil forest, with fine-root production in the loamy-sand forest twice (mean ± standard error = 2.98 ± 0.36 and 3.33 ± 0.69 Mg C ha −1 yr −1, method 1 and 2, respectively) as much as for the more fertile claysoil forest (1.51 ± 0.14, method 1, and from 1.03 ± 0.31 to 1.36 ± 0.23 Mg C ha −1 yr −1, method 2). Similarly, the average of standing crop fine-root mass was three times higher in the loamy-sand forest (5.47 ± 0.17 Mg C ha1) than in the more fertile soil (from 1.52 ± 0.08 a 1.82 ± 0.09 Mg C ha1). The standing crop fine-root mass also showed a temporal pattern related to rainfall, with the production of fine-roots decreasing substantially in the dry period of the year 2005. These results suggest that soil resources may play an important role in patterns of carbon allocation of below-ground components, not only driven the differences in the biomass and its production, but also in the time when it is produced. In Chapter 3, I assessed the three components of stand-level carbon allocation (biomass, NPP, and its partitioning) for the same forests evaluated in Chapter 2 (clay-soil forest and loamy-sand forest). We found differences in carbon allocation patterns between these two forests, showing that the forest on clay-soil had a higher aboveground and total biomass as well as a higher above-ground NPP than the loamy-sand forest. However, differences between the two types of forests in terms of stand-level NPP were smaller, as a consequence of different strategies in the carbon allocation of above- and below-ground components. The proportional allocation of NPP to new foliage production was relatively similar between the two forests. Our results of aboveground biomass increments and fine-root production suggest a possible trade-off between carbon allocation to fine-roots versus wood growth (as it has been reported by other authors), as opposed to the most commonly assumed trade-off between total above- and below-ground production. Despite these differences among forests in terms of carbon allocation components, the leaf area index showed differences between forests like total NPP, suggesting that the leaf area index is more indicative of total NPP than carbon allocation. In Chapter 4, I evaluated the spatial and temporal variation of carbon allocation components and forest dynamics of Amazon forests as well as their responses to climatic fluctuations. I evaluated the intra- and inter-annual variation of carbon allocation components and forest dynamics during the period 2004−2012 in five forests on different soils (clay, clay-loam, sandy-clay-loam, sandy-loam and loamy-sand), but growing under the same local precipitation regime in north-western Amazonia (Colombia). We were interested in examining if these forests respond similarly to rainfall fluctuations as many models predict, considering the following questions: (i) Is there a correlation in carbon allocation components and forest dynamics with precipitation? (ii) Is there a correlation among forests? (iii) Are temporal responses in leaf area index (LAI) indicative of variations of above-ground production or a reflection of changes in carbon allocation patterns among forests?. Overall, the correlation of above- and below-ground carbon allocation components with rainfall suggests that soils play an important role in the spatial and temporal differences of responses of these forests to rainfall fluctuations. On the one hand, most forests showed that the above-ground components are susceptible to rainfall fluctuations; however, there was a forest on loamy-sand that only showed a correlation with the below-ground component (fine-roots). On the other hand, despite the fact that north-western Amazonia is considered without a conspicuous dry season (defined as <100 mm month−1), litterfall and fine-root mass showed high seasonality and variability, particularly marked during the drought of 2005. Additionally, forests of the loam-soil group showed that litterfall respond to time-lags in rainfall as well as and the fine-root mass of the loamy-sand forest. With regard to forest dynamics, only the mortality rate of the loamy-sand forest was significantly correlated with rainfall (77%). The observed inter-annual variability of stem and biomass increments of individuals highlighted the importance of the mortality in the above-ground biomass increment. However, mortality rates and death type proportion did not show clear trends related to droughts. Interestingly, litterfall, above-ground biomass increment and recruitment rates of forests showed high correlation among forests, particularly within the loam-soil forests group. Nonetheless, LAI measured in the most contrasting forests (clay-soil and loamysand) was poorly correlated with rainfall but highly correlated between forests; LAI did not reflect the differences in the carbon allocation components, and their response to rainfall on these forests. Finally, the forests studied highlight that north-western Amazon forests are also susceptible to climate fluctuations, contrary to what has been proposed previously due to their lack of a pronounced dry season.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10–20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse = 0.76), 46% of measured canopy chlorophyll contents (rmse = 719 mg m−2) and 51% of measured canopy nitrogen contents (rmse = 2.7 g m−2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km−2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La caracterización de los cultivos cubierta (cover crops) puede permitir comparar la idoneidad de diferentes especies para proporcionar servicios ecológicos como el control de la erosión, el reciclado de nutrientes o la producción de forrajes. En este trabajo se estudiaron bajo condiciones de campo diferentes técnicas para caracterizar el dosel vegetal con objeto de establecer una metodología para medir y comparar las arquitecturas de los cultivos cubierta más comunes. Se estableció un ensayo de campo en Madrid (España central) para determinar la relación entre el índice de área foliar (LAI) y la cobertura del suelo (GC) para un cultivo de gramínea, uno de leguminosa y uno de crucífera. Para ello se sembraron doce parcelas con cebada (Hordeum vulgare L.), veza (Vicia sativa L.), y colza (Brassica napus L.). En 10 fechas de muestreo se midieron el LAI (con estimaciones directas y del LAI-2000), la fracción interceptada de la radiación fotosintéticamente activa (FIPAR) y la GC. Un experimento de campo de dos años (Octubre-Abril) se estableció en la misma localización para evaluar diferentes especies (Hordeum vulgare L., Secale cereale L., x Triticosecale Whim, Sinapis alba L., Vicia sativa L.) y cultivares (20) en relación con su idoneidad para ser usadas como cultivos cubierta. La GC se monitorizó mediante análisis de imágenes digitales con 21 y 22 muestreos, y la biomasa se midió 8 y 10 veces, respectivamente para cada año. Un modelo de Gompertz caracterizó la cobertura del suelo hasta el decaimiento observado tras las heladas, mientras que la biomasa se ajustó a ecuaciones de Gompertz, logísticas y lineales-exponenciales. Al final del experimento se determinaron el C, el N y el contenido en fibra (neutrodetergente, ácidodetergente y lignina), así como el N fijado por las leguminosas. Se aplicó el análisis de decisión multicriterio (MCDA) con objeto de obtener un ranking de especies y cultivares de acuerdo con su idoneidad para actuar como cultivos cubierta en cuatro modalidades diferentes: cultivo de cobertura, cultivo captura, abono verde y forraje. Las asociaciones de cultivos leguminosas con no leguminosas pueden afectar al crecimiento radicular y a la absorción de N de ambos componentes de la mezcla. El conocimiento de cómo los sistemas radiculares específicos afectan al crecimiento individual de las especies es útil para entender las interacciones en las asociaciones, así como para planificar estrategias de cultivos cubierta. En un tercer ensayo se combinaron estudios en rhizotrones con extracción de raíces e identificación de especies por microscopía, así como con estudios de crecimiento, absorción de N y 15N en capas profundas del suelo. Las interacciones entre raíces en su crecimiento y en el aprovisionamiento de N se estudiaron para dos de los cultivares mejor valorados en el estudio previo: uno de cebada (Hordeum vulgare L. cv. Hispanic) y otro de veza (Vicia sativa L. cv. Aitana). Se añadió N en dosis de 0 (N0), 50 (N1) y 150 (N2) kg N ha-1. Como resultados del primer estudio, se ajustaron correctamente modelos lineales y cuadráticos a la relación entre la GC y el LAI para todos los cultivos, pero en la gramínea alcanzaron una meseta para un LAI>4. Antes de alcanzar la cobertura total, la pendiente de la relación lineal entre ambas variables se situó en un rango entre 0.025 y 0.030. Las lecturas del LAI-2000 estuvieron correlacionadas linealmente con el LAI, aunque con tendencia a la sobreestimación. Las correcciones basadas en el efecto de aglutinación redujeron el error cuadrático medio del LAI estimado por el LAI-2000 desde 1.2 hasta 0.5 para la crucífera y la leguminosa, no siendo efectivas para la cebada. Esto determinó que para los siguientes estudios se midieran únicamente la GC y la biomasa. En el segundo experimento, las gramíneas alcanzaron la mayor cobertura del suelo (83-99%) y la mayor biomasa (1226-1928 g m-2) al final del mismo. Con la mayor relación C/N (27-39) y contenido en fibra digestible (53-60%) y la menor calidad de residuo (~68%). La mostaza presentó elevadas GC, biomasa y absorción de N en el año más templado en similitud con las gramíneas, aunque escasa calidad como forraje en ambos años. La veza presentó la menor absorción de N (2.4-0.7 g N m-2) debido a la fijación de N (9.8-1.6 g N m-2) y escasa acumulación de N. El tiempo térmico hasta alcanzar el 30% de GC constituyó un buen indicador de especies de rápida cubrición. La cuantificación de las variables permitió hallar variabilidad entre las especies y proporcionó información para posteriores decisiones sobre la selección y manejo de los cultivos cubierta. La agregación de dichas variables a través de funciones de utilidad permitió confeccionar rankings de especies y cultivares para cada uso. Las gramíneas fueron las más indicadas para los usos de cultivo de cobertura, cultivo captura y forraje, mientras que las vezas fueron las mejor como abono verde. La mostaza alcanzó altos valores como cultivo de cobertura y captura en el primer año, pero el segundo decayó debido a su pobre actuación en los inviernos fríos. Hispanic fue el mejor cultivar de cebada como cultivo de cobertura y captura, mientras que Albacete como forraje. El triticale Titania alcanzó la posición más alta como cultiva de cobertura, captura y forraje. Las vezas Aitana y BGE014897 mostraron buenas aptitudes como abono verde y cultivo captura. El MCDA permitió la comparación entre especies y cultivares proporcionando información relevante para la selección y manejo de cultivos cubierta. En el estudio en rhizotrones tanto la mezcla de especies como la cebada alcanzaron mayor intensidad de raíces (RI) y profundidad (RD) que la veza, con valores alrededor de 150 cruces m-1 y 1.4 m respectivamente, comparados con 50 cruces m-1 y 0.9 m para la veza. En las capas más profundas del suelo, la asociación de cultivos mostró valores de RI ligeramente mayores que la cebada en monocultivo. La cebada y la asociación obtuvieron mayores valores de densidad de raíces (RLD) (200-600 m m-3) que la veza (25-130) entre 0.8 y 1.2 m de profundidad. Los niveles de N no mostraron efectos claros en RI, RD ó RLD, sin embargo, el incremento de N favoreció la proliferación de raíces de veza en la asociación en capas profundas del suelo, con un ratio cebada/veza situado entre 25 a N0 y 5 a N2. La absorción de N de la cebada se incrementó en la asociación a expensas de la veza (de ~100 a 200 mg planta-1). Las raíces de cebada en la asociación absorbieron también más nitrógeno marcado de las capas profundas del suelo (0.6 mg 15N planta-1) que en el monocultivo (0.3 mg 15N planta-1). ABSTRACT Cover crop characterization may allow comparing the suitability of different species to provide ecological services such as erosion control, nutrient recycling or fodder production. Different techniques to characterize plant canopy were studied under field conditions in order to establish a methodology for measuring and comparing cover crops canopies. A field trial was established in Madrid (central Spain) to determine the relationship between leaf area index (LAI) and ground cover (GC) in a grass, a legume and a crucifer crop. Twelve plots were sown with either barley (Hordeum vulgare L.), vetch (Vicia sativa L.), or rape (Brassica napus L.). On 10 sampling dates the LAI (both direct and LAI-2000 estimations), fraction intercepted of photosynthetically active radiation (FIPAR) and GC were measured. A two-year field experiment (October-April) was established in the same location to evaluate different species (Hordeum vulgare L., Secale cereale L., x Triticosecale Whim, Sinapis alba L., Vicia sativa L.) and cultivars (20) according to their suitability to be used as cover crops. GC was monitored through digital image analysis with 21 and 22 samples, and biomass measured 8 and 10 times, respectively for each season. A Gompertz model characterized ground cover until the decay observed after frosts, while biomass was fitted to Gompertz, logistic and linear-exponential equations. At the end of the experiment C, N, and fiber (neutral detergent, acid and lignin) contents, and the N fixed by the legumes were determined. Multicriteria decision analysis (MCDA) was applied in order to rank the species and cultivars according to their suitability to perform as cover crops in four different modalities: cover crop, catch crop, green manure and fodder. Intercropping legumes and non-legumes may affect the root growth and N uptake of both components in the mixture. The knowledge of how specific root systems affect the growth of the individual species is useful for understanding the interactions in intercrops as well as for planning cover cropping strategies. In a third trial rhizotron studies were combined with root extraction and species identification by microscopy and with studies of growth, N uptake and 15N uptake from deeper soil layers. The root interactions of root growth and N foraging were studied for two of the best ranked cultivars in the previous study: a barley (Hordeum vulgare L. cv. Hispanic) and a vetch (Vicia sativa L. cv. Aitana). N was added at 0 (N0), 50 (N1) and 150 (N2) kg N ha-1. As a result, linear and quadratic models fitted to the relationship between the GC and LAI for all of the crops, but they reached a plateau in the grass when the LAI > 4. Before reaching full cover, the slope of the linear relationship between both variables was within the range of 0.025 to 0.030. The LAI-2000 readings were linearly correlated with the LAI but they tended to overestimation. Corrections based on the clumping effect reduced the root mean square error of the estimated LAI from the LAI-2000 readings from 1.2 to less than 0.50 for the crucifer and the legume, but were not effective for barley. This determined that in the following studies only the GC and biomass were measured. In the second experiment, the grasses reached the highest ground cover (83- 99%) and biomass (1226-1928 g/m2) at the end of the experiment. The grasses had the highest C/N ratio (27-39) and dietary fiber (53-60%) and the lowest residue quality (~68%). The mustard presented high GC, biomass and N uptake in the warmer year with similarity to grasses, but low fodder capability in both years. The vetch presented the lowest N uptake (2.4-0.7 g N/m2) due to N fixation (9.8-1.6 g N/m2) and low biomass accumulation. The thermal time until reaching 30% ground cover was a good indicator of early coverage species. Variable quantification allowed finding variability among the species and provided information for further decisions involving cover crops selection and management. Aggregation of these variables through utility functions allowed ranking species and cultivars for each usage. Grasses were the most suitable for the cover crop, catch crop and fodder uses, while the vetches were the best as green manures. The mustard attained high ranks as cover and catch crop the first season, but the second decayed due to low performance in cold winters. Hispanic was the most suitable barley cultivar as cover and catch crop, and Albacete as fodder. The triticale Titania attained the highest rank as cover and catch crop and fodder. Vetches Aitana and BGE014897 showed good aptitudes as green manures and catch crops. MCDA allowed comparison among species and cultivars and might provide relevant information for cover crops selection and management. In the rhizotron study the intercrop and the barley attained slightly higher root intensity (RI) and root depth (RD) than the vetch, with values around 150 crosses m-1 and 1.4 m respectively, compared to 50 crosses m-1 and 0.9 m for the vetch. At deep soil layers, intercropping showed slightly larger RI values compared to the sole cropped barley. The barley and the intercropping had larger root length density (RLD) values (200-600 m m-3) than the vetch (25-130) at 0.8-1.2 m depth. The topsoil N supply did not show a clear effect on the RI, RD or RLD; however increasing topsoil N favored the proliferation of vetch roots in the intercropping at deep soil layers, with the barley/vetch root ratio ranging from 25 at N0 to 5 at N2. The N uptake of the barley was enhanced in the intercropping at the expense of the vetch (from ~100 mg plant-1 to 200). The intercropped barley roots took up more labeled nitrogen (0.6 mg 15N plant-1) than the sole-cropped barley roots (0.3 mg 15N plant-1) from deep layers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En las últimas dos décadas, los productores han plantado olivares en seto para lograr la mecanización de la poda y en especial de la cosecha, reducir los costes de mano de obra y permitir intervenciones de manejo rápidas y oportunas. Los olivares se desarrollaron en ausencia del conocimiento científico, sobre el diseño óptimo de la estructura de la copa, necesario para incrementar la producción y calidad del aceite. En contraste, con los árboles muy espaciados y distribuidos uniformemente de las plantaciones tradicionales, en el olivar en seto hay una marcada variabilidad espacial y temporal de la radiación disponible en función del diseño de la plantación. Así, conocer la respuesta fisiológica y productiva del olivo a la radiación resulta fundamental en el olivar en seto. La orientación de las filas y el ancho de calle son aspectos que se deciden en el diseño de las plantaciones en seto. Ambos aspectos modifican la radiación interceptada por la canopia y, por lo tanto, pueden incidir en la productividad y calidad del aceite. Una vez realizada la plantación no pueden ser modificados, y así las ventajas o desventajas permanecerán fijas durante toda la vida productiva del olivar. A pesar de esto, el impacto de la orientación de las filas y el ancho de calle han recibido poca atención en olivos y en la mayoría de los frutales conducidos en seto. Por todo ello, los objetivos principales de esta tesis fueron, (i) evaluar el efecto de la orientación del seto y del ancho de calle, sobre la productividad y calidad del aceite, (ii) evaluar un modelo que estime la radiación dentro de la canopia. Este modelo permitirá cuantificar las relaciones entre la radiación y los componentes del rendimiento y calidad del aceite de olivares en setos con un amplio rango de estructuras y (iii) conocer la variabilidad en las características de las hojas (morfológicas y fisiológicas) y de los tejidos del fruto (tamaño y composición) en diferentes posiciones de la copa de los setos. Para ello, se dispuso de 3 ensayos de olivar en seto (cv. Arbequina) implantados en 2008 en el municipio de La Puebla de Montalbán, Toledo. La primera cosecha fue en 2010 y a partir del 2012 los setos formaron una copa continua. A partir de ese año, los setos se mantuvieron mediante poda, con similar ancho (~1 m) y altura (~2,5 m), acordes a las dimensiones de la cosechadora vendimiadora. En los años 2012 y 2013 se estudió en profundidad la respuesta de las plantas de estos ensayos. En el ensayo 1, los setos fueron plantados con cuatro orientaciones de filas: N–S, NE–SO, NO–SE y E–O y el mismo ancho de calle (4 m). En los otros dos ensayos, los setos fueron plantados con tres anchos de calle (5,0, 4,0 y 2,5 m), y con filas orientadas N–S (ensayo 2) y E–O (ensayo 3). La respuesta de la orientación de las filas se evaluó a nivel de seto y de estratos del seto (alturas y caras), a través de mediciones del crecimiento de brotes, componentes reproductivos, características y temperatura del fruto, estado hídrico del suelo y de las plantas, fotosíntesis neta de las hojas y contenido de ácidos grasos. Los setos orientados NE–SO (2,7 t/ha) lograron la mayor producción de aceite, que fue significativamente más alta que la de los setos E–O (2,3 t/ha). La producción de aceite de los setos E–O no se diferenció estadísticamente de los setos N–S (2,5 t/ha). Las diferencias productivas entre orientaciones fueron explicadas por el número de frutos en cosecha, a su vez la variación en el número de frutos estuvo asociada al efecto de la orientación de las filas sobre el número de yemas desarrolladas y el porcentaje de inflorescencias fértiles. Las hojas en las caras iluminadas de los setos NE–SO y N–S presentaron mayor tasa fotosintética a la mañana (~10.0 h) que los setos E–O, en el año 2012, pero no en 2013. La orientación de las filas no tuvo un efecto significativo en el contenido de ácidos grasos de los aceites extraídos, esto ocurrió a pesar de variaciones en la temperatura interna de los frutos (3 °C) y de la radiación (40%) entre las distintas caras de los setos. La orientación del seto afectó significativamente al contenido relativo de agua del suelo, donde setos E–O presentaron valores más altos (12%) que setos N–S durante el verano y otoño. Sin embargo, el potencial hídrico de tallo fue similar entre orientaciones. En los ensayos 2 y 3, se evaluó el efecto que produce, a nivel de seto y de estratos (caras y alturas), reducir el ancho de calle de 5,0 a 4,0 y 2,5 m, en un seto orientado N–S y otro E–O, respectivamente. La relación entre altura/ancho de calle libre aumentó 0,6 a 0,8 y 1,6, al reducir 5,0, 4,0 y 2,5 m el ancho de calle, mientras la longitud de seto y el volumen de copa por hectárea incrementó 100% al reducir de 5,0 a 2,5 m, el ancho de calle. En los setos orientados N–S, la producción de aceite por ha acumulada en 4 campañas, incrementó significativamente un 52 %, al reducir de 5,0 a 2,5 m el ancho de calle. Los setos N–S con calle más estrecha (2,5 m) tuvieron un 19% menos frutos que los setos con calle más ancha (5,0 m) y a su vez el 60% de los mismos se localizaron los estratos altos de la canopia de los setos con calles estrecha en comparación al 40% en setos con calle de 5,0 m. En los estratos más bajos de los setos con calles de 2,5m hubo menor crecimiento de los brotes y los frutos tuvieron menor peso seco, contenido de aceite y madurez, que los frutos en los estratos bajos de los setos a 5,0 m. Los componentes del rendimiento y características de los frutos (agua y madurez) fueron similares entre la caras E y O, independientemente del ancho de calle. En los setos orientados E–O, la producción de aceite por ha acumulada en 4 campañas, no respondió significativamente al ancho de calle, debido a una disminución significativa en el número de frutos y producción de aceite por m de seto, al reducir de 5,0 a 2,5 m, el ancho de calle. En los setos orientados E–O, con calles de 5,0 m, los frutos presentaron similar peso seco, contenido de aceite y agua, en las caras S y N, sin embargo, cuando la calle fue reducida a 2,5, los frutos de la cara S fueron más pesado y maduros que en la cara N. Independientemente del ancho de calle y de la orientación del seto, el aceite presentó mayor contenido de ácidos palmitoleico, palmítico, esteárico y linoleico en los frutos del estrato más alto de la canopia disminuyendo hacia la base. En contraste, el contenido de ácido oleico aumentó desde el estrato más alto hacia la base de los setos. Las diferencias en el contenido de ácidos grasos entre la parte alta y baja de los setos, incrementó al reducir el ancho de calle en los setos N–S, pero no en los E-O. En conclusión, en olivares en seto, reducir el ancho de calle permite incrementar la producción de aceite, en setos orientados N–S, pero no en E–O. Un modelo que estima la cantidad y distribución de la radiación en toda la copa del seto, fue utilizado para estimar la radiación interceptada en distintos estratos del seto. El modelo requiere un valor del coeficiente de extinción (k) para estimar la transmisión de radiación a través de la copa, el cual fue obtenido experimentalmente (k=1,2). Utilizando los datos del ensayo 1, un único modelo lineal relacionó el peso seco y el rendimiento graso de setos con la radiación interceptada por los distintos estratos de setos con cuatro orientaciones de filas. La densidad de frutos fue también relacionada con la radiación, pero más débilmente. En los setos orientados N–S, plantados con tres anchos de calles, (ensayo 2) el contenido de ácidos palmitoleico y linoleico del aceite incrementó linealmente con el incremento de la radiación interceptada, mientras el contenido ácido oleico disminuyó linealmente con el incremento de la radiación. El contenido de ácidos grasos del aceite no estuvo relacionado con la radiación interceptada en setos orientados E–O (Ensayo 3). En los setos N–S y E–O, plantados con anchos de calle de 2,5 m, se estudiaron las interacciones entre la radiación y características de las hojas, número de fruto, tamaño y composición de los frutos a nivel de órgano, tejido y células. Independientemente de la orientación del seto, el área y el contenido de clorofila de las hojas incrementaron significativamente en los estratos más bajos de los setos. Mientras, las hojas de los estratos medios del seto presentaron mayor capacidad fotosintética que en los estratos bajos y alto de los setos. Los estratos del seto que interceptaron más radiación produjeron frutos con mayor tamaño y contenido de aceite en el mesocarpo, sin efectos sobre el tamaño y composición del endocarpo. A nivel celular, los frutos expuestos a mayor nivel de radiación desarrollaron en el mesocarpo células de mayor tamaño en comparación a frutos menos expuestos, mientras el número de células no fue afectado. Adicionalmente, el número y tamaño de las células estuvo relacionado con la composición del mesocarpo en términos de aceite, agua y peso seco menos aceite. Esta tesis, contribuye, desde una perspectiva integral del cultivo del olivo, a cuantificar el impacto de la orientación y ancho de calle sobre la producción y calidad del aceite en olivares conducidos en setos. El análisis y discusión de la relación entre la radiación y los componentes del rendimiento y calidad del aceite, puede ayudar a diseñar plantaciones en seto con dimensiones óptimas para la intercepción de la radiación. ABSTRACT In the last two decades, olive hedgerow system has been established by commercial growers to allow continuous mechanized pruning and especially harvest, reduce costs of manual labour and allow more rapid and timely management interventions. The adoption of hedgerow was done in the absence of adequate scientific knowledge of the impact of this orchard structure and associated mechanization on tree response, yield and quality, after centuries in low-density orchards and open-formed trees. The row orientation and width alley are fundamental aspects in the hedgerow design and have been scarcely studied in olive. Both aspects modify the radiation intercepted by the canopy, and consequently the productivity and oil quality, and once defined in orchard planting cannot be changed, so advantages and disadvantages remain fixed for the lifespan of the orchard. The main objectives of this thesis were to (i) evaluate the impact of the row orientation and width alley on productivity and oil quality by the measurements of profile of the determining processes of shoot growth, fruit temperature, yield components and fruit and oil characteristics on opposite sides of olive hedgerows. Additionally, the effect of row orientation on the plant water status was also evaluated; (ii) evaluate a mathematical model for estimating the radiation within the canopy and quantify the relationships between the radiation estimated and yield components and oil quality in olive hedgerows under wide range of structures and; (iii) determine the variability in the characteristics of the leaves (morphological and physiological) and fruit tissues (size and composition) in different positions of the hedgerows canopy. Three plots of olive hedgerows (cv. Arbequina) planted in 2008 in La Puebla de Montalbán, Toledo were evaluated during the 2012 and 2013 seasons. The hedgerows were maintained by lateral pruning and topping with the same width (1 m) and height (2.5 m) compatible with the intended harvester. In a plot (experiment 1), the hedgerows were planted with the same width alley (4 m) and four row orientations: N–S, NE–SW, NW–SE and E–W. Other two plots (Experiments 2 and 3) separated by approximately 100 m were planted with N–S and E–O oriented rows and three alley widths in each orientation: 5.0, 4.0 and 2.5 m. In the exp. 1, maximum fruit yield were achieved by NE–SW and NW–SW (15.7 t/ha). Of these, NE–SW achieved the highest oil yield (2.7 t/ha). There were no differences in fruit or oil yield between N–S (2.5 t oil/ha) and E–W (2.3 t oil/ha) orientations. Fruit number was the most important component to explain these differences, by previous influence on number of bud developed and percentage of fertile inflorescences. Fruit maturity and oil quality on both sides of the hedgerows were not affected by row orientation. This occurred despite significant variations in the internal fruit temperature, which was closely related to the irradiance received by the canopy and the time of day. Additionally, row orientation significantly affected the relative water content of the soil, where E–W oriented hedgerows showed consistently higher values than N–S during summer-autumn season. The stem water potential at midday, however, was similar between orientations, revealing possible lower water consumption of E–W than N–S oriented hedgerows. In the exp. 2, regardless of row orientation, reduction of row spacing from 5.0 to 4.0 and 2.5 m increases the ratio of canopy depth to free alley width (Al/An) from 0.6 to 0.8 and 1.6, respectively, and ads 25 and 100 % more hedgerow length per ha. In N–S oriented hedgerows, oil production per ha increased significantly by 14 and 52 % in 4.0 m and 2.5 m relative to 5.0 m row spacing, the effect being proportionally less than the increase in hedgerow length per ha. Hedgerows spaced 2.5 m with Al/An = 1.6 produced relatively fewer fruits per unit length than did wider spacings and were preferentially distributed in upper layers. Fruits located at the bottom of the canopy were smaller, with lower oil content and were less mature. In E–W oriented hedgerows, oil production per ha did not respond significantly to row spacing, despite the doubling of row length from the 5.0 to the 2.5 m row spacing. The explanation was found in fewer fruit per unit length of hedgerow and smaller oil content at 2.5 m than 5.0 m row spacing, averaged over the experimental period. In E–W hedgerows spaced at 5.0 m with Al/An = 0.6, the vertical profiles of fruit characteristics (mass, oil and water contents, and maturity) were similar between opposing sides, but at 4.0 m (Al/An= 0.8) and 2.5 m (Al/An=1.6) spacings, fruits on the S side were heavier and more mature than on N side. The oil extracted from fruits harvested at different heights of N–S and E–W oriented hedgerows showed higher palmitoleic, palmitic, stearic and linoleic contents at the canopy top decreasing toward base. The oleic content was reverse, increased from top to base. In N–S hedgerows, vertical gradients increased by reducing the alley width, but not in the E–W oriented hedgerows. The simulation of internal canopy irradiance was related in a single relationship (R2 = 0.63) to the vertical profiles of fruit weight and oil content of olive hedgerows with wide range of structures. The density of fruits was also associated with the irradiance but more weakly (R2 = 0.27), and revealed a more complex response involving changes in the vegetative structure by canopy management (topping) and the effect of radiation on the previous sequence that defines the number of fruits. The vertical profiles of oil quality traits were closely associated to canopy irradiance, but only when the N–S oriented hedgerows were considered. The contents of palmitoleic and linoleic acid in the oil increased linearly when intercepted irradiance increased from 9 to 19 mol PAR/m2. In contrast, oleic content decreased linearly in this irradiance range. Additionally, we advanced knowledge regarding the interactions among irradiance and leaf, fruit number, size and composition at organ-, tissue- and cellular- levels. The irradiance received at different positions in the canopy strongly affected the leaf area and chlorophyll content, and mesocarp size and composition (water and oil), without effects on endocarp size and composition. At the cellular level, light-exposed fruit developed larger mesocarp cells than shaded fruits, but cell number was not affected. Our results indicate that cell number and size are related to mesocarp composition in term of oil, water, and dry weight menus oil, although the specific manner in which they interact remains to be determined. This research contributes from an integral perspective of olive growing to quantify the impact of row orientation and width alley on productivity and oil quality in hedgerows systems. The analysis and discussion of the relationships between radiation and yield components and oil quality can help understand the impact of design olive hedgerows in general and in a wide range of environmental conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Actualmente, la gestión de sistemas de Manejo Integrado de Plagas (MIP) en cultivos hortícolas tiene por objetivo priorizar los métodos de control no químicos en detrimento del consumo de plaguicidas, según recoge la directiva europea 2009/128/CE ‘Uso Sostenible de Plaguicidas’ (OJEC, 2009). El uso de agentes de biocontrol como alternativa a la aplicación de insecticidas es un elemento clave de los sistemas MIP por sus innegables ventajas ambientales que se utiliza ampliamente en nuestro país (Jacas y Urbaneja, 2008). En la región de Almería, donde se concentra el 65% de cultivo en invernadero de nuestro país (47.367 ha), MIP es la principal estrategia en pimiento (MAGRAMA, 2014), y comienza a serlo en otros cultivos como tomate o pepino. El cultivo de pepino, con 8.902 ha (MAGRAMA, 2013), tiene un protocolo semejante al pimiento (Robledo et al., 2009), donde la única especie de pulgón importante es Aphis gossypii Glover. Sin embargo, pese al continuo incremento de la superficie de cultivo agrícola bajo sistemas MIP, los daños originados por virosis siguen siendo notables. Algunos de los insectos presentes en los cultivos de hortícolas son importantes vectores de virus, como los pulgones, las moscas blancas o los trips, cuyo control resulta problemático debido a su elevada capacidad para transmitir virus vegetales incluso a una baja densidad de plaga (Holt et al., 2008; Jacas y Urbaneja, 2008). Las relaciones que se establecen entre los distintos agentes de un ecosistema son complejas y muy específicas. Se ha comprobado que, pese a que los enemigos naturales reducen de manera beneficiosa los niveles de plaga, su incorporación en los sistemas planta-insecto-virus puede desencadenar complicadas interacciones con efectos no deseables (Dicke y van Loon, 2000; Jeger et al., 2011). Así, los agentes de biocontrol también pueden inducir a que los insectos vectores modifiquen su comportamiento como respuesta al ataque y, con ello, el grado de dispersión y los patrones de distribución de las virosis que transmiten (Bailey et al., 1995; Weber et al., 1996; Hodge y Powell, 2008a; Hodge et al., 2011). Además, en ocasiones el control biológico por sí solo no es suficiente para controlar determinadas plagas (Medina et al., 2008). Entre los métodos que se pueden aplicar bajo sistemas MIP están las barreras físicas que limitan la entrada de plagas al interior de los invernaderos o interfieren con su movimiento, como pueden ser las mallas anti-insecto (Álvarez et al., 2014), las mallas fotoselectivas (Raviv y Antignus, 2004; Weintraub y Berlinger, 2004; Díaz y Fereres, 2007) y las mallas impregnadas en insecticida (Licciardi et al., 2008; Martin et al., 2014). Las mallas fotoselectivas reducen o bloquean casi por completo la transmisión de radiación UV, lo que interfiere con la visión de los insectos y dificulta o impide la localización del cultivo y su establecimiento en el mismo (Raviv y Antignus, 2004; Weintraub, 2009). Se ha comprobado cómo su uso puede controlar los pulgones y las virosis en cultivo de lechuga (Díaz et al., 2006; Legarrea et al., 2012a), así como la mosca blanca, los trips y los ácaros, y los virus que estos transmiten en otros cultivos (Costa y Robb, 1999; Antignus et al., 2001; Kumar y Poehling, 2006; Doukas y Payne, 2007a; Legarrea et al., 2010). Sin embargo, no se conoce perfectamente el modo de acción de estas barreras, puesto que existe un efecto directo sobre la plaga y otro indirecto mediado por la planta, cuya fisiología cambia al desarrollarse en ambientes con falta de radiación UV, y que podría afectar al ciclo biológico de los insectos fitófagos (Vänninen et al., 2010; Johansen et al., 2011). Del mismo modo, es necesario estudiar la compatibilidad de esta estrategia con los enemigos naturales de las plagas. Hasta la fecha, los estudios han evidenciado que los agentes de biocontrol pueden realizar su actividad bajo ambientes pobres en radiación UV (Chyzik et al., 2003; Chiel et al., 2006; Doukas y Payne, 2007b; Legarrea et al., 2012c). Otro método basado en barreras físicas son las mallas impregnadas con insecticidas, que se han usado tradicionalmente en la prevención de enfermedades humanas transmitidas por mosquitos (Martin et al., 2006). Su aplicación se ha ensayado en agricultura en ciertos cultivos al aire libre (Martin et al., 2010; Díaz et al., 2004), pero su utilidad en cultivos protegidos para prevenir la entrada de insectos vectores en invernadero todavía no ha sido investigada. Los aditivos se incorporan al tejido durante el proceso de extrusión de la fibra y se liberan lentamente actuando por contacto en el momento en que el insecto aterriza sobre la malla, con lo cual el riesgo medioambiental y para la salud humana es muy limitado. Los plaguicidas que se emplean habitualmente suelen ser piretroides (deltametrina o bifentrín), aunque también se ha ensayado dicofol (Martin et al., 2010) y alfa-cipermetrina (Martin et al., 2014). Un factor que resulta de vital importancia en este tipo de mallas es el tamaño del poro para facilitar una buena ventilación del cultivo, al tiempo que se evita la entrada de insectos de pequeño tamaño como las moscas blancas (Bethke y Paine, 1991; Muñoz et al., 1999). Asimismo, se plantea la necesidad de estudiar la compatibilidad de estas mallas con los enemigos naturales. Es por ello que en esta Tesis Doctoral se plantea la necesidad de evaluar nuevas mallas impregnadas que impidan el paso de insectos de pequeño tamaño al interior de los invernaderos, pero que a su vez mantengan un buen intercambio y circulación de aire a través del poro de la malla. Así, en la presente Tesis Doctoral, se han planteado los siguientes objetivos generales a desarrollar: 1. Estudiar el impacto de la presencia de parasitoides sobre el grado de dispersión y los patrones de distribución de pulgones y las virosis que éstos transmiten. 2. Conocer el efecto directo de ambientes pobres en radiación UV sobre el comportamiento de vuelo de plagas clave de hortícolas y sus enemigos naturales. 3. Evaluar el efecto directo de la radiación UV-A sobre el crecimiento poblacional de pulgones y mosca blanca, y sobre la fisiología de sus plantas hospederas, así como el efecto indirecto de la radiación UV-A en ambas plagas mediado por el crecimiento de dichas planta hospederas. 4. Caracterización de diversas mallas impregnadas en deltametrina y bifentrín con diferentes propiedades y selección de las óptimas para el control de pulgones, mosca blanca y sus virosis asociadas en condiciones de campo. Estudio de su compatibilidad con parasitoides. ABSTRACT Insect vectors of plant viruses are the main agents causing major economic losses in vegetable crops grown under protected environments. This Thesis focuses on the implementation of new alternatives to chemical control of insect vectors under Integrated Pest Management programs. In Spain, biological control is the main pest control strategy used in a large part of greenhouses where horticultural crops are grown. The first study aimed to increase our knowledge on how the presence of natural enemies such as Aphidius colemani Viereck may alter the dispersal of the aphid vector Aphis gossypii Glover (Chapter 4). In addition, it was investigated if the presence of this parasitoid affected the spread of aphid-transmitted viruses Cucumber mosaic virus (CMV, Cucumovirus) and Cucurbit aphid-borne yellows virus (CABYV, Polerovirus) infecting cucumber (Cucumis sativus L). SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersal in the short term, which enhanced CMV spread, though consequences of parasitism suggested potential benefits for disease control in the long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV in the long term. The flight activity of pests Myzus persicae (Sulzer), Bemisia tabaci (Gennadius) and Tuta absoluta (Meyrick), and natural enemies A. colemani and Sphaerophoria rueppellii (Weidemann) under UV-deficient environments was studied under field conditions (Chapter 5). One-chamber tunnels were covered with cladding materials with different UV transmittance properties. Inside each tunnel, insects were released from tubes placed in a platform suspended from the ceiling. Specific targets were located at different distances from the platform. The ability of aphids and whiteflies to reach their targets was diminished under UV-absorbing barriers, suggesting a reduction of vector activity under this type of nets. Fewer aphids reached distant traps under UV-absorbing nets, and significantly more aphids could fly to the end of the tunnels covered with non-UV blocking materials. Unlike aphids, differences in B. tabaci captures were mainly found in the closest targets. The oviposition of lepidopteran T. absoluta was also negatively affected by a UV-absorbing cover. The photoselective barriers were compatible with parasitism and oviposition of biocontrol agents. Apart from the direct response of insects to UV radiation, plant-mediated effects influencing insect performance were investigated (Chapter 6). The impact of UV-A radiation on the performance of aphid M. persicae and whitefly B. tabaci, and growth and leaf physiology of host plants pepper and eggplant was studied under glasshouse conditions. Plants were grown inside cages covered by transparent and UV-A-opaque plastic films. Plant growth and insect fitness were monitored. Leaves were harvested for chemical analysis. Pepper plants responded directly to UV-A by producing shorter stems whilst UV-A did not affect the leaf area of either species. UV-A-treated peppers had higher content of secondary metabolites, soluble carbohydrates, free amino acids and proteins. Such changes in tissue chemistry indirectly promoted aphid performance. For eggplants, chlorophyll and carotenoid levels decreased with supplemental UVA but phenolics were not affected. Exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues, as compounds implied in pest nutrition were unaltered. Lastly, the efficacy of a wide range of Long Lasting Insecticide Treated Nets (LLITNs) was studied under laboratory and field conditions. This strategy aimed to prevent aphids and whiteflies to enter the greenhouse by determining the optimum mesh size (Chapter 7). This new approach is based on slow release deltamethrin- and bifenthrin-treated nets with large hole sizes that allow improved ventilation of greenhouses. All LLITNs produced high mortality of M. persicae and A. gossypii although their efficacy decreased over time with sun exposure. It was necessary a net with hole size of 0.29 mm2 to exclude B. tabaci under laboratory conditions. The feasibility of two selected nets was studied in the field under a high insect infestation pressure in the presence of CMV- and CABYV-infected cucumber plants. Besides, the compatibility of parasitoid A. colemani with bifenthrin-treated nets was studied in parallel field experiments. Both nets effectively blocked the invasion of aphids and reduced the incidence of both viruses, however they failed to exclude whiteflies. We found that our LLITNs were compatible with parasitoid A. colemani. As shown, the role of natural enemies has to be taken into account regarding the dispersal of insect vectors and subsequent spread of plant viruses. The additional benefits of novel physicochemical barriers, such as photoselective and insecticide-impregnated nets, need to be considered in Integrated Pest Management programs of vegetable crops grown under protected environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

All crop models, whether site-specific or global-gridded and regardless of crop, simulate daily crop transpiration and soil evaporation during the crop life cycle, resulting in seasonal crop water use. Modelers use several methods for predicting daily potential evapotranspiration (ET), including FAO-56, Penman-Monteith, Priestley-Taylor, Hargreaves, full energy balance, and transpiration water efficiency. They use extinction equations to partition energy to soil evaporation or transpiration, depending on leaf area index. Most models simulate soil water balance and soil-root water supply for transpiration, and limit transpiration if water uptake is insufficient, and thereafter reduce dry matter production. Comparisons among multiple crop and global gridded models in the Agricultural Model Intercomparison and Improvement Project (AgMIP) show surprisingly large differences in simulated ET and crop water use for the same climatic conditions. Model intercomparisons alone are not enough to know which approaches are correct. There is an urgent need to test these models against field-observed data on ET and crop water use. It is important to test various ET modules/equations in a model platform where other aspects such as soil water balance and rooting are held constant, to avoid compensation caused by other parts of models. The CSM-CROPGRO model in DSSAT already has ET equations for Priestley-Taylor, Penman-FAO-24, Penman-Monteith-FAO-56, and an hourly energy balance approach. In this work, we added transpiration-efficiency modules to DSSAT and AgMaize models and tested the various ET equations against available data on ET, soil water balance, and season-long crop water use of soybean, fababean, maize, and other crops where runoff and deep percolation were known or zero. The different ET modules created considerable differences in predicted ET, growth, and yield.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El cambio climático y sus efectos requieren con urgencia el desarrollo de estrategias capaces no solo de mitigar pero también permitir la adaptación de los sistemas afectados por este fenómeno a los cambios que están provocando a nivel mundial. Olas de calor más largas y frecuentes, inundaciones, y graves sequías aumentan la vulnerabilidad de la población, especialmente en asentamientos urbanos. Este fenómeno y sus soluciones potenciales han sido ampliamente estudiados en las últimas décadas desde diferentes perspectivas y escalas que analizan desde el fenómeno regional de isla de calor al aumento de la intensidad energética necesaria en los edificios para mantener las condiciones de confort en los escenarios de calentamiento que se predicen. Su comprensión requiere el entendimiento de este fenómeno y un profundo análisis de las estrategias que pueden corregirlo y adaptarse a él. En la búsqueda de soluciones a este problema, las estrategias que incorporan sistemas naturales tales como las cubiertas ajardinadas, las fachadas vegetadas y bosques urbanos, se presentan como opciones de diseño capaces de proporcionan múltiples servicios al ecosistema urbano y de regular y hacer frente a los efectos del cambio climático. Entre los servicios que aportan estos sistemas naturales se incluyen la gestión de agua de tormentas, el control del efecto isla de calor, la mejora de la calidad del aire y del agua, el aumento de la diversidad, y como consecuencia de todo lo anterior, la reducción de la huella ecológica de las ciudades. En la última década, se han desarrollado múltiples estudios para evaluar y cuantificar los servicios al ecosistema proporcionados por las infraestructuras verdes, y específicamente las cubiertas ajardinadas, sin embargo, determinados servicios como la capacidad de la regulación del microclima urbano no ha sido apenas estudiados. La mayor parte de la literatura en este campo la componen estudios relacionados con la capacidad de las cubiertas ajardinadas de reducir el efecto de la isla de calor, en una escala local, o acerca de la reducción de la demanda energética de refrigeración debida a la instalación de cubiertas ajardinadas en la escala de edificio. La escala intermedia entre estos dos ámbitos, la calle, desde su ámbito habitable cercano al suelo hasta el límite superior del cañón urbano que configura, no han sido objeto detallado de estudio por lo que es esta escala el objeto de esta tesis doctoral. Esta investigación tiene como objeto contribuir en este campo y aportar un mayor entendimiento a través de la cuantificación del impacto de las cubiertas ajardinadas sobre la temperatura y humedad en el cañón urbano en la escala de calle y con un especial foco en el nivel peatonal. El primer paso de esta investigación ha sido la definición del objeto de estudio a través del análisis y revisión de trabajos tanto teóricos como empíricos que investigan los efectos de cubiertas ajardinadas en el entorno construido, entendidas como una herramienta para la adaptación y mitigación del impacto del cambio climático en las ciudades. La literatura analizada, revela el gran potencial de los sistemas vegetales como herramientas para el diseño pasivo puesto que no solo son capaces de mejorar las condiciones climáticas y microclimaticas en las ciudades reduciendo su demanda energética, sino también la necesidad de mayor análisis en la escala de calle donde confluyen el clima, las superficies urbanas y materiales y vegetación. Este análisis requiere una metodología donde se integren la respuesta térmica de edificios, las variaciones en los patrones de viento y radiación, y la interacción con la vegetación, por lo que un análisis cuantitativo puede ayudar a definir las estrategias más efectivas para lograr espacios urbanos más habitables. En este contexto, el objetivo principal de esta investigación ha sido la evaluación cuantitativa del impacto de la cubierta ajardinada en el microclima urbano a escala de barrio en condiciones de verano en los climas mediterráneos continentales. Para el logro de este objetivo, se ha seguido un proceso que persigue identificar los modelos y herramientas de cálculo capaces de capturar el efecto de la cubierta ajardinada sobre el microclima, identificar los parámetros que potencian o limitan este efecto, y cuantificar las variaciones que microclima creado en el cañón urbano produce en el consumo de energía de los edificios que rodean éste espacio. La hipótesis principal detrás de esta investigación y donde los objetivos anteriores se basan es el siguiente: "una cubierta ajardinada instalada en edificios de mediana altura favorece el establecimiento de microclimas a nivel peatonal y reduce las temperaturas en el entorno urbano donde se encuentra”. Con el fin de verificar la hipótesis anterior y alcanzar los objetivos propuestos se ha seguido la siguiente metodología: • definición del alcance y limitaciones del análisis • Selección de las herramientas y modelos de análisis • análisis teórico de los parámetros que afectan el efecto de las cubiertas ajardinadas • análisis experimental; • modelización energética • conclusiones y futuras líneas de trabajo Dada la complejidad de los fenómenos que intervienen en la generación de unas determinadas condiciones microclimáticas, se ha limitado el objeto de este estudio a las variables de temperatura y humedad, y sólo se han tenido en cuenta los componentes bióticos y abióticos del sistema, que incluyen la morfología, características superficiales del entorno estudiado, así como los elementos vegetales. Los componentes antrópicos no se han incluido en este análisis. La búsqueda de herramientas adecuadas para cumplir con los objetivos de este análisis ha concluido en la selección de ENVI-met v4 como el software más adecuado para esta investigación por su capacidad para representar los complejos fenómenos que caracterizan el microclima en cañones urbanos, en una escala temporal diaria y con unas escala local de vecindario. Esta herramienta supera el desafío que plantean los requisitos informáticos de un cálculo completo basado en elementos finitos realizados a través de herramientas de dinámica de fluidos computacional (CFD) que requieren una capacidad de cálculo computacional y tiempo privativos y en una escala dimensional y temporal limitada a esta capacidad computacional lo que no responde a los objetivos de esta investigación. ENVI-met 4 se basa es un modelo tridimensional del micro clima diseñado para simular las interacciones superficie-planta-aire en entornos urbanos. Basado en las ecuaciones fundamentales del equilibrio que representan, la conservación de masa, energía y momento. ENVI-met es un software predictivo, y como primer paso ha requerido la definición de las condiciones iniciales de contorno que se utilizan como punto de partida por el software para generar su propio perfil de temperatura y humedad diaria basada en la localización de la construcción, geometría, vegetación y las superficies de características físicas del entorno. La geometría de base utilizada para este primer análisis se ha basado en una estructura típica en cuanto al trazado urbano situada en Madrid que se ha simulado con una cubierta tradicional y una cubierta ajardinada en sus edificios. La estructura urbana seleccionada para este análisis comparativo es una red ortogonal con las calles principales orientadas este-oeste. El edificio típico que compone el vecindario se ha definido como “business as usual” (BAU) y se ha definido con una cubierta de baldosa de hormigón estándar, con un albedo 0.3, paredes con albedo 0.2 (construcción de muro de ladrillo típico) y cerramientos adiabáticos para evitar las posibles interferencias causadas por el intercambio térmico con el ambiente interior del edificio en los resultados del análisis. Para el caso de la cubierta ajardinada, se mantiene la misma geometría y características del edificio con excepción de la cobertura superficial de la azotea. Las baldosas de hormigón se han modificado con una cubierta ajardinada extensiva cubierta con plantas xerófilas, típicas en el clima de Madrid y caracterizado por su índice de densidad foliar, el “leaf area density” (LAD), que es la superficie total de superficie de hojas por unidad de volumen (m2/m3). El análisis se centra en los cañones urbanos entendidos como el espacio de calle comprendido entre los límites geométricos de la calle, verticales y horizontales, y el nivel superior de la cota urbana nivel de cubiertas. Los escenarios analizados se basan en la variación de la los principales parámetros que según la literatura analizada condicionan las variaciones microclimáticas en el ámbito urbano afectado por la vegetación, la velocidad del viento y el LAD de la azotea. Los resultados han sido registrados bajo condiciones de exposición solar diferentes. Las simulaciones fueron realizadas por los patrones de viento típico de verano, que para Madrid se caracterizan por vientos de componente suroeste que van desde 3 a 0 m/s. las simulaciones fueron realizadas para unas condiciones climáticas de referencia de 3, 2, 1 y 0 m/s a nivel superior del cañón urbano, como condición de contorno para el análisis. Los resultados calculados a 1,4 metros por encima del nivel del suelo, en el espacio habitado, mostraron que el efecto de la cubierta ajardinada era menor en condiciones de contorno con velocidades de viento más altas aunque en ningún caso el efecto de la cubierta verde sobre la temperatura del aire superó reducciones de temperatura de aire superiores a 1 º C. La humedad relativa no presentó variaciones significativas al comparar los diferentes escenarios. Las simulaciones realizadas para vientos con velocidad baja, entre 0 y 1 m/s mostraron que por debajo de 0.5 m/s la turbulencia del modelo aumentó drásticamente y se convirtió en el modelo inestable e incapaz de producir resultados fiables. Esto es debido al modelo de turbulencia en el software que no es válido para velocidades de viento bajas, lo que limita la capacidad de ENVI-met 4 para realizar simulaciones en estas condiciones de viento y es una de las principales conclusiones de este análisis en cuanto a la herramienta de simulación. También se comprobó el efecto de las densidades de la densidad de hoja (LAD) de los componentes vegetales en el modelo en la capa de aire inmediatamente superior a la cubierta, a 0,5 m sobre este nivel. Se compararon tres alternativas de densidad de hoja con la cubierta de baldosa de hormigón: el techo verde con LAD 0.3 (hierba típica o sedum), LAD 1.5 (plantas mixtas típicas) y LAD 2.5 (masa del árbol). Los resultados mostraron diferencias de temperatura muy relevante entre las diferentes alternativas de LAD analizadas. Los resultados muestran variaciones de temperatura que oscilan entre 3 y 5 º C al comparar el estándar de la azotea concreta con albedo 0, 3 con el techo con vegetación y vegetación densa, mostrando la importancia del LAD en la cuantificación de los efectos de las cubiertas vegetales en microclima circundante, lo que coincide con los datos reportados en la literatura existente y con los estudios empíricos analizados. Los resultados de los análisis teóricos han llegado a las siguientes conclusiones iniciales relacionadas con la herramienta de simulación y los resultados del modelo: En relación con la herramienta ENVI-met, se han observado limitaciones para el análisis. En primer lugar, la estructura rígida de la geometría, las bases de datos y el tamaño de la cuadrícula, limitan la escala y resolución de los análisis no permitiendo el desarrollo de grandes zonas urbanas. Por otro lado la estructura de ENVI-met permite el desarrollo de este tipo de simulación tan complejo dentro de tiempos razonables de cálculo y requerimientos computacionales convencionales. Otra limitación es el modelo de turbulencia del software, que no modela correctamente velocidades de viento bajas (entre 0 y 1 m/s), por debajo de 0,5 m/s el modelo da errores y no es estable, los resultados a estas velocidades no son fiables porque las turbulencias generadas por el modelo hacen imposible la extracción de patrones claros de viento y temperatura que permitan la comparación entre los escenarios de cubierta de hormigón y ajardinada. Además de las limitaciones anteriores, las bases de datos y parámetros de entrada en la versión pública del software están limitados y la complejidad de generar nuevos sistemas adaptándolos al edificio o modelo urbano que se quiera reproducir no es factible salvo en la versión profesional del software. Aparte de las limitaciones anteriores, los patrones de viento y perfiles de temperatura generados por ENVI-met concuerdan con análisis previos en los que se identificaban patrones de variación de viento y temperaturas en cañones urbanos con patrones de viento, relación de aspecto y dimensiones similares a los analizados en esta investigación. Por lo tanto, el software ha demostrado una buena capacidad para reproducir los patrones de viento en los cañones de la calle y capturar el efecto de enfriamiento producido por la cubierta verde en el cañón. En relación con el modelo, el resultado revela la influencia del viento, la radiación y el LAD en la temperatura del aire en cañones urbanos con relación de aspecto comprendida entre 0,5 y 1. Siendo el efecto de la cubierta verde más notable en cañones urbanos sombreados con relación de aspecto 1 y velocidades de viento en el nivel de “canopy” (por encima de la cubierta) de 1 m/s. En ningún caso las reducciones en la temperatura del aire excedieron 1 º C, y las variaciones en la humedad relativa no excedieron 1% entre los escenarios estudiados. Una vez que se han identificado los parámetros relevantes, que fueron principalmente la velocidad del viento y el LAD, se realizó un análisis experimental para comprobar los resultados obtenidos por el modelo. Para éste propósito se identificó una cubierta ajardinada de grandes dimensiones capaz de representar la escala urbana que es el objeto del estudio. El edificio usado para este fin fue el parking de la terminal 4 del aeropuerto internacional de Madrid. Aunque esto no es un área urbana estándar, la escala y la configuración del espacio alrededor del edificio fueron considerados aceptables para el análisis por su similitud con el contexto urbano objeto de estudio. El edificio tiene 800 x 200 m, y una altura 15 m. Está rodeado de vías de acceso pavimentadas con aceras conformando un cañón urbano limitado por el edificio del parking, la calle y el edificio de la terminal T4. El aparcamiento está cerrado con fachadas que configuran un espacio urbano de tipo cañón, con una relación de aspecto menor que 0,5. Esta geometría presenta patrones de viento y velocidad dentro del cañón que difieren ligeramente de los generados en el estudio teórico y se acercan más a los valores a nivel de canopo sobre la cubierta del edificio, pero que no han afectado a la tendencia general de los resultados obtenidos. El edificio cuenta con la cubierta ajardinada más grande en Europa, 12 Ha cubiertas por con una mezcla de hierbas y sedum y con un valor estimado de LAD de 1,5. Los edificios están rodeados por áreas plantadas en las aceras y árboles de sombra en las fachadas del edificio principal. El efecto de la cubierta ajardinada se evaluó mediante el control de temperaturas y humedad relativa en el cañón en un día típico de verano. La selección del día se hizo teniendo en cuenta las predicciones meteorológicas para que fuesen lo más semejantes a las condiciones óptimas para capturar el efecto de la cubierta vegetal sobre el microclima urbano identificadas en el modelo teórico. El 09 de julio de 2014 fue seleccionado para la campaña de medición porque las predicciones mostraban 1 m/s velocidad del viento y cielos despejados, condiciones muy similares a las condiciones climáticas bajo las que el efecto de la cubierta ajardinada era más notorio en el modelo teórico. Las mediciones se registraron cada hora entre las 9:00 y las 19:00 en 09 de julio de 2014. Temperatura, humedad relativa y velocidad del viento se registraron en 5 niveles diferentes, a 1.5, 4.5, 7.5, 11.5 y 16 m por encima del suelo y a 0,5 m de distancia de la fachada del edificio. Las mediciones fueron tomadas en tres escenarios diferentes, con exposición soleada, exposición la sombra y exposición influenciada por los árboles cercanos y suelo húmedo. Temperatura, humedad relativa y velocidad del viento se registraron con un equipo TESTO 410-2 con una resolución de 0,1 ºC para temperatura, 0,1 m/s en la velocidad del viento y el 0,1% de humedad relativa. Se registraron las temperaturas de la superficie de los edificios circundantes para evaluar su efecto sobre los registros usando una cámara infrarroja FLIR E4, con resolución de temperatura 0,15ºC. Distancia mínima a la superficie de 0,5 m y rango de las mediciones de Tª de - 20 º C y 250 º C. Los perfiles de temperatura extraídos de la medición in situ mostraron la influencia de la exposición solar en las variaciones de temperatura a lo largo del día, así como la influencia del calor irradiado por las superficies que habían sido expuestas a la radiación solar así como la influencia de las áreas de jardín alrededor del edificio. Después de que las medidas fueran tomadas, se llevaron a cabo las siguientes simulaciones para evaluar el impacto de la cubierta ajardinada en el microclima: a. estándar de la azotea: edificio T4 asumiendo un techo de tejas de hormigón con albedo 0.3. b. b. cubierta vegetal : T4 edificio asumiendo una extensa cubierta verde con valor bajo del LAD (0.5)-techo de sedum simple. c. c. cubierta vegetal: T4 edificio asumiendo una extensa cubierta verde con alta joven valor 1.5-mezcla de plantas d. d. cubierta ajardinada más vegetación nivel calle: el edificio T4 con LAD 1.5, incluyendo los árboles existentes a nivel de calle. Este escenario representa las condiciones actuales del edificio medido. El viento de referencia a nivel de cubierta se fijó en 1 m/s, coincidente con el registro de velocidad de viento en ese nivel durante la campaña de medición. Esta velocidad del viento se mantuvo constante durante toda la campaña. Bajo las condiciones anteriores, los resultados de los modelos muestran un efecto moderado de azoteas verdes en el microclima circundante que van desde 1 º a 2 º C, pero una contribución mayor cuando se combina con vegetación a nivel peatonal. En este caso las reducciones de temperatura alcanzan hasta 4 ºC. La humedad relativa sin embargo, no presenta apenas variación entre los escenarios con y sin cubierta ajardinada. Las temperaturas medidas in situ se compararon con resultados del modelo, mostrando una gran similitud en los perfiles definidos en ambos casos. Esto demuestra la buena capacidad de ENVI-met para reproducir el efecto de la cubierta ajardinada sobre el microclima y por tanto para el fin de esta investigación. Las diferencias más grandes se registraron en las áreas cercanas a las zonas superiores de las fachadas que estaban más expuestas a la radiación del sol y también el nivel del suelo, por la influencia de los pavimentos. Estas diferencias se pudieron causar por las características de los cerramientos en el modelo que estaban limitados por los datos disponibles en la base de datos de software, y que se diferencian con los del edificio real. Una observación importante derivada de este estudio es la contribución del suelo húmedo en el efecto de la cubierta ajardinada en la temperatura del aire. En el escenario de la cubierta ajardinada con los arboles existentes a pie de calle, el efecto del suelo húmedo contribuye a aumentar las reducciones de temperatura hasta 4.5ºC, potenciando el efecto combinado de la cubierta ajardinada y la vegetación a pie de calle. Se realizó un análisis final después de extraer el perfil horario de temperaturas en el cañón urbano influenciado por el efecto de las cubiertas ajardinadas y los árboles. Con esos perfiles modificados de temperatura y humedad se desarrolló un modelo energético en el edificio asumiendo un edificio cerrado y climatizado, con uso de oficinas, una temperatura de consigna de acuerdo al RITE de 26 ºC, y con los sistemas por defecto que establece el software para el cálculo de la demanda energética y que responden a ASHRAE 90.1. El software seleccionado para la simulación fue Design Builder, por su capacidad para generar simulaciones horarias y por ser una de las herramientas de simulación energética más reconocidas en el mercado. Los perfiles modificados de temperatura y humedad se insertaron en el año climático tipo y se condujo la simulación horaria para el día definido, el 9 de Julio. Para la simulación se dejaron por defecto los valores de conductancia térmica de los cerramientos y la eficiencia de los equipos de acuerdo a los valores que fija el estándar ASHRAE para la zona climática de Madrid, que es la 4. El resultado mostraba reducciones en el consumo de un día pico de hasta un 14% de reducción en las horas punta. La principal conclusión de éste estudio es la confirmación del potencial de las cubiertas ajardinadas como una estrategia para reducir la temperatura del aire y consumo de energía en los edificios, aunque este efecto puede ser limitado por la influencia de los vientos, la radiación y la especie seleccionada para el ajardinamiento, en especial de su LAD. Así mismo, en combinación con los bosques urbanos su efecto se potencia e incluso más si hay pavimentos húmedos o suelos porosos incluidos en la morfología del cañón urbano, convirtiéndose en una estrategia potencial para adaptar los ecosistemas urbanos el efecto aumento de temperatura derivado del cambio climático. En cuanto a la herramienta, ENVI-met se considera una buena opción para éste tipo de análisis dada su capacidad para reproducir de un modo muy cercano a la realidad el efecto de las cubiertas. Aparte de ser una herramienta validada en estudios anteriores, en el caso experimental se ha comprobado por medio de la comparación de las mediciones con los resultados del modelo. A su vez, los resultados y patrones de vientos generados en los cañones urbanos coinciden con otros estudios similares, concluyendo por tanto que es un software adecuado para el objeto de esta tesis doctoral. Como líneas de investigación futura, sería necesario entender el efecto de la cubierta ajardinada en el microclima urbano en diferentes zonas climáticas, así como un mayor estudio de otras variables que no se han observado en este análisis, como la temperatura media radiante y los indicadores de confort. Así mismo, la evaluación de otros parámetros que afectan el microclima urbano tales como variables geométricas y propiedades superficiales debería ser analizada en profundidad para tener un resultado que cubra todas las variables que afectan el microclima en el cañón urbano. ABSTRACT Climate Change is posing an urgency in the development of strategies able not only to mitigate but also adapt to the effects that this global problem is evidencing around the world. Heat waves, flooding and severe draughts increase the vulnerability of population, and this is especially critical in urban settlements. This has been extensively studied over the past decades, addressed from different perspectives and ranging from the regional heat island analysis to the building scale. Its understanding requires physical and dimensional analysis of this broad phenomenon and a deep analysis of the factors and the strategies which can offset it. In the search of solutions to this problem, green infrastructure elements such as green roofs, walls and urban forests arise as strategies able provide multiple regulating ecosystem services to the urban environment able to cope with climate change effects. This includes storm water management, heat island effect control, and improvement of air and water quality. Over the last decade, multiple studies have been developed to evaluate and quantify the ecosystem services provided by green roofs, however, specific regulating services addressing urban microclimate and their impact on the urban dwellers have not been widely quantified. This research tries to contribute to fill this gap and analyzes the effects of green roofs and urban forests on urban microclimate at pedestrian level, quantifying its potential for regulating ambient temperature in hot season in Mediterranean –continental climates. The study is divided into a sequence of analysis where the critical factors affecting the performance of the green roof system on the microclimate are identified and the effects of the green roof is tested in a real case study. The first step has been the definition of the object of study, through the analysis and review of theoretical and empirical papers that investigate the effects of covers landscaped in the built environment, in the context of its use as a tool for adaptation and mitigation of the impact of climate change on cities and urban development. This literature review, reveals the great potential of the plant systems as a tool for passive design capable of improving the climatic and microclimatic conditions in the cities, as well as its positive impact on the energy performance of buildings, but also the need for further analysis at the street scale where climate, urban surfaces and materials, and vegetation converge. This analysis requires a methodology where the thermal buildings response, the variations in the patterns of wind and the interaction of the vegetation are integrated, so a quantitative analysis can help to define the most effective strategies to achieve liveable urban spaces and collaterally, , the improvement of the surrounding buildings energy performance. In this specific scale research is needed and should be customized to every climate, urban condition and nature based strategy. In this context, the main objective for this research was the quantitative assessment of the Green roof impact on the urban microclimate at a neighbourhood scale in summer conditions in Mediterranean- continental climates. For the achievement of this main objective, the following secondary objectives have been set: • Identify the numerical models and calculation tools able to capture the effect of the roof garden on the microclimate. • Identify the enhancing or limiting parameter affecting this effect. • Quantification of the impact of the microclimate created on the energy consumption of buildings surrounding the street canyon analysed. The main hypothesis behind this research and where the above objectives are funded on is as follows: "An extensive roof installed in medium height buildings favours the establishment of microclimates at the pedestrian level and reduces the temperatures in the urban environment where they are located." For the purpose of verifying the above hypothesis and achieving the proposed objectives the following methodology has been followed: - Definition of hypothesis and objectives - Definition of the scope and limitations - Theoretical analysis of parameters affecting gren roof performance - Experimental analysis; - Energy modelling analyisis - Conclusions and future lines of work The search for suitable tools and models for meeting the objectives of this analysis has led to ENVI-met v4 as the most suitable software for this research. ENVI met is a three-dimensional micro-climate model designed to simulate the surface-plant-air interactions in urban environments. Based in the fundamental equations representing, mass, energy and momentum conservation, the software has the capacity of representing the complex phenomena characterizing the microclimate in urban canyons, overcoming the challenge posed by the computing requirements of a full calculus based on finite elements done via traditional computational fluid dynamics tools. Once the analysis tool has been defined, a first set of analysis has been developed to identify the main parameters affecting the green roof influence on the microclimate. In this analysis, two different scenarios are compared. A neighborhood with standard concrete tile roof and the same configuration substituting the concrete tile by an extensive green roof. Once the scenarios have been modeled, different iterations have been run to identify the influence of different wind patterns, solar exposure and roof vegetation type on the microclimate, since those are the most relevant variables affecting urban microclimates. These analysis have been run to check the conditions under which the effects of green roofs get significance. Since ENVI-met V4 is a predictive software, the first step has been the definition of the initial weather conditions which are then used as starting point by the software, which generates its own daily temperature and humidity profile based on the location of the building, geometry, vegetation and the surfaces physical characteristics. The base geometry used for this first analysis has been based on a typical urban layout structure located in Madrid, an orthogonal net with the main streets oriented East-West to ease the analysis of solar radiation in the different points of the model. This layout represents a typical urban neighborhood, with street canyons keeping an aspect ratio between 0.5 and 1 and high sky view factor to ensure correct sun access to the streets and buildings and work with typical wind flow patterns. Finally, the roof vegetation has been defined in terms of foliage density known as Leaf Area Density (LAD) and defined as the total one-sided leaf area per unit of layer volume. This index is the most relevant vegetation characteristic for the purpose of calculating the effect of vegetation on wind and solar radiation as well as the energy consumed during its metabolic processes. The building as usual (BAU) configuring the urban layout has been defined with standard concrete tile roofs, considering 0.3 albedo. Walls have been set with albedo 0.2 (typical brick wall construction) and adiabatic to avoid interference caused by thermal interchanges with the building indoor environment. For the proposed case, the same geometry and building characteristics have been kept. The only change is the roof surface coverage. The gravel on the roof has been changed with an extensive green roof covered with drought tolerant plants, typical in Madrid climate, and characterized by their LAD. The different scenarios analysed are based in the variation of the wind speed and the LAD of the roof. The results have been recorded under different sun exposure conditions. Simulations were run for the typical summer wind patterns, that for Madrid are characterized by South-west winds ranging from 3 to 0 m/s. Simulations were run for 3, 2, 1 and 0 m/s at urban canopy level. Results taken at 1.4 m above the ground showed that the green roof effect was lower with higher wind speeds and in any case the effect of the green roof on the air temperatures exceeded air temperature reductions higher than 1ºC. Relative humidity presented no variations when comparing the different scenarios. For the analysis at 0m/s, ENVI-met generated error and no results were obtained. Different simulations showed that under 0.5 m/s turbulence increased dramatically and the model became unstable and unable to produce reliable results. This is due to the turbulence model embedded in the software which is not valid for low wind speeds (below 1 m/s). The effect of the different foliage densities was also tested in the model. Three different alternatives were compared against the concrete roof: green roof with LAD 0.3 ( typical grass or sedum), 1.5 (typical mixed plants) and 2.5 (tree mass). The results showed very relevant temperature differences between the different LAD alternatives analyzed. Results show temperature variations ranging between 3 and 5 ºC when comparing the standard concrete roof with albedo 0, 3 with the vegetated roof and vegetated mass, showing the relevance of the LAD on the effects of green roofs on microclimate. This matches the data reported in existing literature and empirical studies and confirms the relevance of the LAD in the roof effect on the surrounding microclimate. The results of the theoretical analysis have reached the following initial conclusions related to both, the simulation tool and the model results: • In relation to the tool ENVI-met, some limitations for the analysis have been observed. In first place, the rigid structure of the geometry, the data bases and the grid size, limit the scale and resolution of the analysis not allowing the development of large urban areas. On the other hand the ENVI-met structure enables the development of this type of complex simulation within reasonable times and computational requirements for the purpose of this analysis. Additionally, the model is unable to run simulations at wind speeds lower than 0.5 m/s, and even at this speed, the results are not reliable because the turbulences generated by the model that made impossible to extract clear temperature differences between the concrete and green roof scenarios. Besides the above limitations, the wind patterns and temperature profiles generated by ENVImet are in agreement with previous analysis identifying wind patterns in urban canyons with similar characteristics and aspect ratio. Therefore the software has shown a good capacity for reproducing the wind effects in the street canyons and seems to capture the cooling effect produced by the green roof. • In relation to the model, the results reveals the influence of wind, radiation and LAD on air temperature in urban canyons with aspect ratio comprised between 0.5 and 1. Being the effect of the green roof more noticeable in shaded urban canyons with aspect ratio 1 and wind speeds of 1 m/s. In no case the reductions in air temperature exceeded 1ºC. Once the relevant parameters have been identified, mainly wind speed and LAD, an experimental analysis was conducted to test the results obtained by the model. For this purpose a large green roof was identified, able to represent the urban scale which is the object of the studio. The building identified for this purpose was the terminal 4, parking building of the international Madrid Airport. Even though this is not a standard urban area, the scale and configuration of the space around the building were deemed as acceptable for the analysis. The building is an 800x200 m, 15 m height parking building, surrounded by access paved paths and the terminal building. The parking is enclosed with facades that configure an urban canyon-like space, although the aspect ratio is lower than 0.5 and the wind patterns might differ from the theoretical model run. The building features the largest green roof in Europe, a 12 Ha extensive green roof populated with a mix of herbs and sedum with a LAD of 1.5. The buildings are surrounded by planted areas at the sidewalk and trees shading the main building facades. Green roof performance was evaluated by monitoring temperatures and relative humidity in the canyon in a typical summer day. The day selection was done taking into account meteorological predictions so the weather conditions on the measurement day were as close as possible as the optimal conditions identified in terms of green roof effects on the urban canyon. July 9th 2014 was selected for the measurement campaign because the predictions showed 1 m/s wind speed and sunny sky, which were very similar to the weather conditions where the effect of the green roof was most noticeable in the theory model. Measurements were registered hourly from 9:00am to 19:00 on July 9th 2014. Temperature, relative humidity and wind speed were recorded at 5 different levels, at 1.5, 4.5, 7.5, 11.5 and 16 m above ground and at 0.5 m distance from the building façade. Measurements were taken in three different scenarios, sunny exposure, shaded exposure, and shaded exposure influenced by nearby trees and moist soil. Temperature, relative humidity and wind speed were registered using a TESTO 410-2 anemometer, with 0.1ºC resolution for temperature, 0.1 m/s resolution for wind speed and 0.1 % for relative humidity. Surface temperatures were registered using an infrared camera FLIR E4, with temperature resolution 0.15ºC. Minimal distance to surface of 0.5 m and Tª measurements range from -20ºC and 250ºC. The temperature profiles measured on the site showed the influence of solar exposure on the temperature variations along the day, as well as the influence of the heat irradiated by the building surfaces which had been exposed to the sun radiation and those influenced by the moist soft areas around the building. After the measurements were taken, the following simulations were conducted to evaluate the impact of the green roof on the microclimate: a. Standard roof: T4 building assuming a concrete tile roof with albedo 0.3. b. Green roof: T4 building assuming an extensive green roof with low LAD value (0.5)-Simple Sedum roof. c. Green roof: T4 building assuming an extensive green roof with high LAD value 1.5- Lucerne and grasses d. Green roof plus street level vegetation: T4 Building, LAD 1.5 (Lucerne), including the existing trees at street level. This scenario represents the current conditions of the building. The urban canopy wind was set as 1 m/s, the wind speed register at that level during the measurement campaign. This wind speed remained constant over the whole campaign. Under the above conditions, the results of the models show a moderate effect of green roofs on the surrounding microclimate ranging from 1ºC to 2ºC, but a larger contribution when combining it with vegetation at pedestrian level, where 4ºC temperature reductions are reached. Relative humidity remained constant. Measured temperatures and relative humidity were compared to model results, showing a close match in the profiles defined in both cases and the good capacity of ENVI met to capture the impact of the green roof in this analysis. The largest differences were registered in the areas close to the top areas of the facades which were more exposed to sun radiation and also near to the soil level. These differences might be caused by differences between the materials properties included in the model (which were limited by the data available in the software database) and those in the real building. An important observation derived from this study is the contribution of moist soil to the green roof effect on air temperatures. In the green roof scenario with surrounding trees, the effect of the moist soil contributes to raise the temperature reductions at 4.5ºC. A final analysis was conducted after extracting the hourly temperature profile in the street canyon influenced by the effect of green roofs and trees. An energy model was run on the building assuming it was a conventional enclosed building. Energy demand reductions were registered in the building reaching up to 14% reductions at the peak hour. The main conclusion of this study is the potential of the green roofs as a strategy for reducing air temperatures and energy consumption in the buildings, although this effect can be limited by the influence of high speed winds. This effect can be enhanced its combination with urban forests and even more if soft moist pavements are included in the urban canyon morphology, becoming a potential strategy for adapting urban ecosystems to the increasing temperature effect derived from climate change.