6 resultados para speaker recognition

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MFCC coefficients extracted from the power spectral density of speech as a whole, seems to have become the de facto standard in the area of speaker recognition, as demonstrated by its use in almost all systems submitted to the 2013 Speaker Recognition Evaluation (SRE) in Mobile Environment [1], thus relegating to background this component of the recognition systems. However, in this article we will show that selecting the adequate speaker characterization system is as important as the selection of the classifier. To accomplish this we will compare the recognition rates achieved by different recognition systems that relies on the same classifier (GMM-UBM) but connected with different feature extraction systems (based on both classical and biometric parameters). As a result we will show that a gender dependent biometric parameterization with a simple recognition system based on GMM- UBM paradigm provides very competitive or even better recognition rates when compared to more complex classification systems based on classical features

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La cuestión principal abordada en esta tesis doctoral es la mejora de los sistemas biométricos de reconocimiento de personas a partir de la voz, proponiendo el uso de una nueva parametrización, que hemos denominado parametrización biométrica extendida dependiente de género (GDEBP en sus siglas en inglés). No se propone una ruptura completa respecto a los parámetros clásicos sino una nueva forma de utilizarlos y complementarlos. En concreto, proponemos el uso de parámetros diferentes dependiendo del género del locutor, ya que como es bien sabido, la voz masculina y femenina presentan características diferentes que deberán modelarse, por tanto, de diferente manera. Además complementamos los parámetros clásicos utilizados (MFFC extraídos de la señal de voz), con un nuevo conjunto de parámetros extraídos a partir de la deconstrucción de la señal de voz en sus componentes de fuente glótica (más relacionada con el proceso y órganos de fonación y por tanto con características físicas del locutor) y de tracto vocal (más relacionada con la articulación acústica y por tanto con el mensaje emitido). Para verificar la validez de esta propuesta se plantean diversos escenarios, utilizando diferentes bases de datos, para validar que la GDEBP permite generar una descripción más precisa de los locutores que los parámetros MFCC clásicos independientes del género. En concreto se plantean diferentes escenarios de identificación sobre texto restringido y texto independiente utilizando las bases de datos de HESPERIA y ALBAYZIN. El trabajo también se completa con la participación en dos competiciones internacionales de reconocimiento de locutor, NIST SRE (2010 y 2012) y MOBIO 2013. En el primer caso debido a la naturaleza de las bases de datos utilizadas se obtuvieron resultados cercanos al estado del arte, mientras que en el segundo de los casos el sistema presentado obtuvo la mejor tasa de reconocimiento para locutores femeninos. A pesar de que el objetivo principal de esta tesis no es el estudio de sistemas de clasificación, sí ha sido necesario analizar el rendimiento de diferentes sistemas de clasificación, para ver el rendimiento de la parametrización propuesta. En concreto, se ha abordado el uso de sistemas de reconocimiento basados en el paradigma GMM-UBM, supervectores e i-vectors. Los resultados que se presentan confirman que la utilización de características que permitan describir los locutores de manera más precisa es en cierto modo más importante que la elección del sistema de clasificación utilizado por el sistema. En este sentido la parametrización propuesta supone un paso adelante en la mejora de los sistemas de reconocimiento biométrico de personas por la voz, ya que incluso con sistemas de clasificación relativamente simples se consiguen tasas de reconocimiento realmente competitivas. ABSTRACT The main question addressed in this thesis is the improvement of automatic speaker recognition systems, by the introduction of a new front-end module that we have called Gender Dependent Extended Biometric Parameterisation (GDEBP). This front-end do not constitute a complete break with respect to classical parameterisation techniques used in speaker recognition but a new way to obtain these parameters while introducing some complementary ones. Specifically, we propose a gender-dependent parameterisation, since as it is well known male and female voices have different characteristic, and therefore the use of different parameters to model these distinguishing characteristics should provide a better characterisation of speakers. Additionally, we propose the introduction of a new set of biometric parameters extracted from the components which result from the deconstruction of the voice into its glottal source estimate (close related to the phonation process and the involved organs, and therefore the physical characteristics of the speaker) and vocal tract estimate (close related to acoustic articulation and therefore to the spoken message). These biometric parameters constitute a complement to the classical MFCC extracted from the power spectral density of speech as a whole. In order to check the validity of this proposal we establish different practical scenarios, using different databases, so we can conclude that a GDEBP generates a more accurate description of speakers than classical approaches based on gender-independent MFCC. Specifically, we propose scenarios based on text-constrain and text-independent test using HESPERIA and ALBAYZIN databases. This work is also completed with the participation in two international speaker recognition evaluations: NIST SRE (2010 and 2012) and MOBIO 2013, with diverse results. In the first case, due to the nature of the NIST databases, we obtain results closed to state-of-the-art although confirming our hypothesis, whereas in the MOBIO SRE we obtain the best simple system performance for female speakers. Although the study of classification systems is beyond the scope of this thesis, we found it necessary to analise the performance of different classification systems, in order to verify the effect of them on the propose parameterisation. In particular, we have addressed the use of speaker recognition systems based on the GMM-UBM paradigm, supervectors and i-vectors. The presented results confirm that the selection of a set of parameters that allows for a more accurate description of the speakers is as important as the selection of the classification method used by the biometric system. In this sense, the proposed parameterisation constitutes a step forward in improving speaker recognition systems, since even when using relatively simple classification systems, really competitive recognition rates are achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of automatic pathological voice detection systems is to serve as tools, to medical specialists, for a more objective, less invasive and improved diagnosis of diseases. In this respect, the gold standard for those system include the usage of a optimized representation of the spectral envelope, either based on cepstral coefficients from the mel-scaled Fourier spectral envelope (Mel-Frequency Cepstral Coefficients) or from an all-pole estimation (Linear Prediction Coding Cepstral Coefficients) forcharacterization, and Gaussian Mixture Models for posterior classification. However, the study of recently proposed GMM-based classifiers as well as Nuisance mitigation techniques, such as those employed in speaker recognition, has not been widely considered inpathology detection labours. The present work aims at testing whether or not the employment of such speaker recognition tools might contribute to improve system performance in pathology detection systems, specifically in the automatic detection of Obstructive Sleep Apnea. The testing procedure employs an Obstructive Sleep Apnea database, in conjunction with GMM-based classifiers looking for a better performance. The results show that an improved performance might be obtained by using such approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gender detection is a very important objective to improve efficiency in tasks as speech or speaker recognition, among others. Traditionally gender detection has been focused on fundamental frequency (f0) and cepstral features derived from voiced segments of speech. The methodology presented here consists in obtaining uncorrelated glottal and vocal tract components which are parameterized as mel-frequency coefficients. K-fold and cross-validation using QDA and GMM classifiers showed that better detection rates are reached when glottal source and vocal tract parameters are used in a gender-balanced database of running speech from 340 speakers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El habla es la principal herramienta de comunicación de la que dispone el ser humano que, no sólo le permite expresar su pensamiento y sus sentimientos sino que le distingue como individuo. El análisis de la señal de voz es fundamental para múltiples aplicaciones como pueden ser: síntesis y reconocimiento de habla, codificación, detección de patologías, identificación y reconocimiento de locutor… En el mercado se pueden encontrar herramientas comerciales o de libre distribución para realizar esta tarea. El objetivo de este Proyecto Fin de Grado es reunir varios algoritmos de análisis de la señal de voz en una única herramienta que se manejará a través de un entorno gráfico. Los algoritmos están siendo utilizados en el Grupo de investigación en Aplicaciones MultiMedia y Acústica de la Universidad Politécnica de Madrid para llevar a cabo su tarea investigadora y para ofertar talleres formativos a los alumnos de grado de la Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación. Actualmente se ha encontrado alguna dificultad para poder aplicar los algoritmos ya que se han ido desarrollando a lo largo de varios años, por distintas personas y en distintos entornos de programación. Se han adaptado los programas existentes para generar una única herramienta en MATLAB que permite: . Detección de voz . Detección sordo/sonoro . Extracción y revisión manual de frecuencia fundamental de los sonidos sonoros . Extracción y revisión manual de formantes de los sonidos sonoros En todos los casos el usuario puede ajustar los parámetros de análisis y se ha mantenido y, en algunos casos, ampliado la funcionalidad de los algoritmos existentes. Los resultados del análisis se pueden manejar directamente en la aplicación o guardarse en un fichero. Por último se ha escrito el manual de usuario de la aplicación y se ha generado una aplicación independiente que puede instalarse y ejecutarse aunque no se disponga del software o de la versión adecuada de MATLAB. ABSTRACT. The speech is the main communication tool which has the human that as well as allowing to express his thoughts and feelings distinguishes him as an individual. The analysis of speech signal is essential for multiple applications such as: synthesis and recognition of speech, coding, detection of pathologies, identification and speaker recognition… In the market you can find commercial or open source tools to perform this task. The aim of this Final Degree Project is collect several algorithms of speech signal analysis in a single tool which will be managed through a graphical environment. These algorithms are being used in the research group Aplicaciones MultiMedia y Acústica at the Universidad Politécnica de Madrid to carry out its research work and to offer training workshops for students at the Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación. Currently some difficulty has been found to be able to apply the algorithms as they have been developing over several years, by different people and in different programming environments. Existing programs have been adapted to generate a single tool in MATLAB that allows: . Voice Detection . Voice/Unvoice Detection . Extraction and manual review of fundamental frequency of voiced sounds . Extraction and manual review formant voiced sounds In all cases the user can adjust the scan settings, we have maintained and in some cases expanded the functionality of existing algorithms. The analysis results can be managed directly in the application or saved to a file. Finally we have written the application user’s manual and it has generated a standalone application that can be installed and run although the user does not have MATLAB software or the appropriate version.