6 resultados para space requirements
em Universidad Politécnica de Madrid
Resumo:
En esta Tesis Doctoral se aborda la utilización de filtros de difusión no lineal para obtener imágenes constantes a trozos como paso previo al proceso de segmentación. En una primera parte se propone un formulación intrínseca para la ecuación de difusión no lineal que proporcione las condiciones de diseño necesarias sobre los filtros de difusión. A partir del marco teórico propuesto, se proporciona una nueva familia de difusividades; éstas son obtenidas a partir de técnicas de difusión no lineal relacionadas con los procesos de difusión regresivos. El objetivo es descomponer la imagen en regiones cerradas que sean homogéneas en sus niveles de grises sin contornos difusos. Asimismo, se prueba que la función de difusividad propuesta satisface las condiciones de un correcto planteamiento semi-discreto. Esto muestra que mediante el esquema semi-implícito habitualmente utilizado, realmente se hace un proceso de difusión no lineal directa, en lugar de difusión inversa, conectando con proceso de preservación de bordes. Bajo estas condiciones establecidas, se plantea un criterio de parada para el proceso de difusión, para obtener imágenes constantes a trozos con un bajo coste computacional. Una vez aplicado todo el proceso al caso unidimensional, se extienden los resultados teóricos, al caso de imágenes en 2D y 3D. Para el caso en 3D, se detalla el esquema numérico para el problema evolutivo no lineal, con condiciones de contorno Neumann homogéneas. Finalmente, se prueba el filtro propuesto para imágenes reales en 2D y 3D y se ilustran los resultados de la difusividad propuesta como método para obtener imágenes constantes a trozos. En el caso de imágenes 3D, se aborda la problemática del proceso previo a la segmentación del hígado, mediante imágenes reales provenientes de Tomografías Axiales Computarizadas (TAC). En ese caso, se obtienen resultados sobre la estimación de los parámetros de la función de difusividad propuesta. This Ph.D. Thesis deals with the case of using nonlinear diffusion filters to obtain piecewise constant images as a previous process for segmentation techniques. I have first shown an intrinsic formulation for the nonlinear diffusion equation to provide some design conditions on the diffusion filters. According to this theoretical framework, I have proposed a new family of diffusivities; they are obtained from nonlinear diffusion techniques and are related with backward diffusion. Their goal is to split the image in closed contours with a homogenized grey intensity inside and with no blurred edges. It has also proved that the proposed filters satisfy the well-posedness semi-discrete and full discrete scale-space requirements. This shows that by using semi-implicit schemes, a forward nonlinear diffusion equation is solved, instead of a backward nonlinear diffusion equation, connecting with an edgepreserving process. Under the conditions established for the diffusivity and using a stopping criterion I for the diffusion time, I have obtained piecewise constant images with a low computational effort. The whole process in the one-dimensional case is extended to the case where 2D and 3D theoretical results are applied to real images. For 3D, develops in detail the numerical scheme for nonlinear evolutionary problem with homogeneous Neumann boundary conditions. Finally, I have tested the proposed filter with real images for 2D and 3D and I have illustrated the effects of the proposed diffusivity function as a method to get piecewise constant images. For 3D I have developed a preprocess for liver segmentation with real images from CT (Computerized Tomography). In this case, I have obtained results on the estimation of the parameters of the given diffusivity function.
Resumo:
The availability of suitable laser sources is one of the main challenges in future space missions for accurate measurement of atmospheric CO2. The main objective of the European project BRITESPACE is to demonstrate the feasibility of an all-semiconductor laser source to be used as a space-borne laser transmitter in an Integrated Path Differential Absorption (IPDA) lidar system. We present here the proposed transmitter and system architectures, the initial device design and the results of the simulations performed in order to estimate the source requirements in terms of power, beam quality, and spectral properties to achieve the required measurement accuracy. The laser transmitter is based on two InGaAsP/InP monolithic Master Oscillator Power Amplifiers (MOPAs), providing the ON and OFF wavelengths close to the selected absorption line around 1.57 µm. Each MOPA consists of a frequency stabilized Distributed Feedback (DFB) master oscillator, a modulator section, and a tapered semiconductor amplifier optimized to maximize the optical output power. The design of the space-compliant laser module includes the beam forming optics and the thermoelectric coolers.The proposed system replaces the conventional pulsed source with a modulated continuous wave source using the Random Modulation-Continuous Wave (RM-CW) approach, allowing the designed semiconductor MOPA to be applicable in such applications. The system requirements for obtaining a CO2 retrieval accuracy of 1 ppmv and a spatial resolution of less than 10 meters have been defined. Envelope estimated of the returns indicate that the average power needed is of a few watts and that the main noise source is the ambient noise.
Resumo:
A 3-year Project started on November 1 2010, financed by the European Commision within the FP-7 Space Program, and aimed at developing an efficient de-orbit system that could be carried on board by future spacecraft launched into LEO, will be presented. The operational system will deploy a thin uninsulated tape-tether to collect electrons as a giant Langmuir probe, using no propellant/no power supply, and generating power on board. This project will involve free-fall tests, and laboratory hypervelocity-impact and tether-current tests, and design/Manufacturing of subsystems: interface elements, electric control and driving module, electron-ejecting plasma contactor, tether-deployment mechanism/end-mass, and tape samples. Preliminary results to be presented involve: i) devising criteria for sizing the three disparate tape dimensions, affecting mass, resistance, current-collection, magnetic self-field, and survivability against debris itself; ii) assessing the dynamical relevance of tether parameters in implementing control laws to limit oscillations in /off the orbital plane, where passive stability may be marginal; iii) deriving a law for bare-tape current from numerical simulations and chamber tests, taking into account ambient magnetic field, ion ram motion, and adiabatic electron trapping; iv) determining requirements on a year-dormant hollow cathode under long times/broad emission-range operation, and trading-off against use of electron thermal emission; v) determining requirements on magnetic components and power semiconductors for a control module that faces high voltage/power operation under mass/volume limitations; vi) assessing strategies to passively deploy a wide conductive tape that needs no retrieval, while avoiding jamming and ending at minimum libration; vii) evaluating the tape structure as regards conductive and dielectric materials, both lengthwise and in its cross-section, in particular to prevent arcing in triple-point junctions.
Resumo:
Several boost-derived topologies are analyzed and compared for an aerospace application that uses a 100 V voltage bus. All these topologies have been designed and optimized considering the electrical requirements and the reduced number of space-qualified components. The comparison evaluates the power losses, mass, and dynamic response. Special attention has been paid to those topologies that may cancel the inherent right half plane zero (RHP) zero of the boost topology. Experimental results of the less common topologies are presented.
Resumo:
The ability to accurately observe the Earth's carbon cycles from space gives scientists an important tool to analyze climate change. Current space-borne Integrated-Path Differential Absorption (IPDA) Iidar concepts have the potential to meet this need. They are mainly based on the pulsed time-offlight principle, in which two high energy pulses of different wavelengths interrogate the atmosphere for its transmission properties and are backscattered by the ground. In this paper, feasibility study results of a Pseudo-Random Single Photon Counting (PRSPC) IPDA lidar are reported. The proposed approach replaces the high energy pulsed source (e.g. a solidstate laser), with a semiconductor laser in CW operation with a similar average power of a few Watts, benefiting from better efficiency and reliability. The auto-correlation property of Pseudo-Random Binary Sequence (PRBS) and temporal shifting of the codes can be utilized to transmit both wavelengths simultaneously, avoiding the beam misalignment problem experienced by pulsed techniques. The envelope signal to noise ratio has been analyzed, and various system parameters have been selected. By restricting the telescopes field-of-view, the dominant noise source of ambient light can be suppressed, and in addition with a low noise single photon counting detector, a retrieval precision of 1.5 ppm over 50 km along-track averaging could be attained. We also describe preliminary experimental results involving a negative feedback Indium Gallium Arsenide (InGaAs) single photon avalanche photodiode and a low power Distributed Feedback laser diode modulated with PRBS driven acoustic optical modulator. The results demonstrate that higher detector saturation count rates will be needed for use in future spacebourne missions but measurement linearity and precision should meet the stringent requirements set out by future Earthobserving missions.
Resumo:
In this paper, we report on the progresses of the BRITESPACE Consortium in order to achieve space-borne LIDAR measurements of atmospheric carbon dioxide concentration based on an all semiconductor laser source at 1.57 ?m. The complete design of the proposed RM-CW IPDA LIDAR has been presented and described in detail. Complete descriptions of the laser module and the FSU have been presented. Two bended MOPAs, emitting at the sounding frequency of the on- and off- IPDA channels, have been proposed as the transmitter optical sources with the required high brightness. Experimental results on the bended MOPAs have been presented showing a high spectral purity and promising expectations on the high output power requirements. Finally, the RM-CW approach has been modelled and an estimation of the expected SNR for the entire system is presented. Preliminary results indicate that a CO2 retrieval precision of 1.5 ppm could be achieved with an average output power of 2 W for each channel.