4 resultados para solder
em Universidad Politécnica de Madrid
Resumo:
The reliability of Pb-free solder joints is controlled by their microstructural constituents. Therefore, knowledge of the solder microconstituents’ mechanical properties as a function of temperature is required. Sn-Ag-Cu lead-free solder alloy contains three phases: a Sn-rich phase, and the intermetallic compounds (IMCs) Cu6Sn5 and Ag3Sn. Typically, the Sn-rich phase is surrounded by a eutectic mixture of β-Sn, Cu6Sn5, and Ag3Sn. In this paper, we report on the Young’s modulus and hardness of the Cu6Sn5 and Cu3Sn IMCs, the β-Sn phase, and the eutectic compound, as measured by nanoindentation at elevated temperatures. For both the β-Sn phase and the eutectic compound, the hardness and Young’s modulus exhibited strong temperature dependence. In the case of the intermetallics, this temperature dependence is observed for Cu6Sn5, but the mechanical properties of Cu3Sn are more stable up to 200°C.
Resumo:
This paper details an investigation into the appearance of hot-spots in two large grid-connected photovoltaics (PV) plants, which were detected after the visual inspection of trackers whose energy output was decreasing at anomalous rate. Detected hot-spots appeared not only in the solar cells but also in resistive solder bonds (RSB) between cells and contact ribbons. Both types cause similar irreversible damage to the PV modules, but the latter are the main responsible for the detected decrease in energy output, which was confirmed in an experimental testing campaign. The results of this investigation, for example, how hot-spots were detected or their impact on the output power of PV modules, may be of interest for the routine maintenance of large grid-connected PV plants.
Resumo:
A number of findings have shown that the test procedures currently available to determine the reliability and durability of photovoltaic (PV) modules are insufficient to detect certain problems. To improve these procedures, ongoing research into the actual performance of the modules in the field is required. However, scientific literature contains but few references to field studies of defective modules. This article studies two different localized heating phenomena affecting the PV modules of two large-scale PV plants in Spain. The first problem relates to weak solder joints whilst the second is due to microcracks on the module cells. For both cases, the cause is identified, and consideration is given with regard to the effect on performance, the potential deterioration over time, and a way to detect the problems identified. The findings contained in this paper will prove to be of considerable interest to maintenance personnel at large-scale PV plants and also to those responsible for setting module quality standards and specifications, and even the PV module manufacturers themselves.
Resumo:
CPV receivers are made of materials with very different lineal expansion coefficients. Strong variations in DNI due to the passage of clouds can cause sudden temperature changes that creates mechanical stress. For common solder and metal filled polymers the plastic limit could be reached causing substantial fatigue. The best forecast of receiver reliability is therefore achieved by applying an intermittent light source with nominal irradiance level and a number of cycles equal to the expected cloud passages for a given site. The UPM has developed specialized equipment, dubbed the LYSS (Light cYcling Stressing Source), for carrying out such experiments. The small thermal capacity of receivers allows simulating more than 25000 cycles per week. The number of deep transients expected for Madrid in 30 years operation, based on available data, is about 45000. We are currently using the system to cycle a ?Ge/Ag Epoxy/aluminum? receiver, which shows no degradation after 20000 cycles. The equipment can cast up to 200 and 70 W/cm2 on 0.1 and 1 cm2 cells, respectively.