60 resultados para solar power

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European strategies on energy have been searching for years to reduce the dependency of Europe from fossil fuels. Underlying this effort, there exist geopolitical, economic, environmental reasons and the reality that oil reservoirs will dry out some day. Renewable energies have become a milestone of this strategy because their huge potential has emerged after years of uncertainty. One of the better developed renewable sources, which is nearer to commercial maturity is solar-thermal energy. In this paper, the current state of this technology will be described as well as the developments that may be expected in the short and mid terms, including the thermoelectric solar megaproject DESERTEC, a German proposal to ensure energy resources to the mayor areas of the EU-MENA countries. The reader will acquire a picture of the current state of the market, of the technical challenges already achieved and of the remaining ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

System Advisor Model is a software tool develped by National Renewable Laboratory (NREL), Department Of Energy, USA to design Solar Power Plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supercritical Rankine power cycle offers a net improvement in plant efficiency compared with a subcritical Rankine cycle. For fossil power plants the minimum supercritical steam turbine size is about 450MW. A recent study between Sandia National Laboratories and Siemens Energy, Inc., published on March 2013, confirmed the feasibility of adapting the Siemens turbine SST-900 for supercritical steam in concentrated solar power plants, with a live steam conditions 230-260 bar and output range between 140-200 MWe. In this context, this analysis is focused on integrating a line-focus solar field with a supercritical Rankine power cycle. For this purpose two heat transfer fluids were assessed: direct steam generation and molten salt Hitec XL. To isolate solar field from high pressure supercritical water power cycle, an intermediate heat exchanger was installed between linear solar collectors and balance of plant. Due to receiver selective coating temperature limitations, turbine inlet temperature was fixed 550ºC. The design-point conditions were 550ºC and 260 bar at turbine inlet, and 165 MWe Gross power output. Plant performance was assessed at design-point in the supercritical power plant (between 43-45% net plant efficiency depending on balance of plantconfiguration), and in the subcritical plant configuration (~40% net plant efficiency). Regarding the balance of plant configuration, direct reheating was adopted as the optimum solution to avoid any intermediate heat exchanger. One direct reheating stage between high pressure turbine and intermediate pressure turbine is the common practice; however, General Electric ultrasupercritical(350 bar) fossil power plants also considered doubled-reheat applications. In this study were analyzed heat balances with single-reheat, double-reheat and even three reheating stages. In all cases were adopted the proper reheating solar field configurations to limit solar collectors pressure drops. As main conclusion, it was confirmed net plant efficiency improvements in supercritical Rankine line-focus (parabolic or linear Fresnel) solar plant configurations are mainly due to the following two reasons: higher number of feed-water preheaters (up to seven)delivering hotter water at solar field inlet, and two or even three direct reheating stages (550ºC reheating temperature) in high or intermediate pressure turbines. However, the turbine manufacturer should confirm the equipment constrains regarding reheating stages and number of steam extractions to feed-water heaters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energía termosolar (de concentración) es uno de los nombres que hacen referencia en español al término inglés “concentrating solar power”. Se trata de una tecnología basada en la captura de la potencia térmica de la radiación solar, de forma que permita alcanzar temperaturas capaces de alimentar un ciclo termodinámico convencional (o avanzado); el futuro de esta tecnología depende principalmente de su capacidad para concentrar la radiación solar de manera eficiente y económica. La presente tesis está orientada hacia la resolución de ciertos problemas importantes relacionados con este objetivo. La mencionada necesidad de reducir costes en la concentración de radiación solar directa, asegurando el objetivo termodinámico de calentar un fluido hasta una determinada temperatura, es de vital importancia. Los colectores lineales Fresnel han sido identificados en la literatura científica como una tecnología con gran potencial para alcanzar esta reducción de costes. Dicha tecnología ha sido seleccionada por numerosas razones, entre las que destacan su gran libertad de diseño y su actual estado inmaduro. Con el objetivo de responder a este desafío se desarrollado un detallado estudio de las propiedades ópticas de los colectores lineales Fresnel, para lo cual se han utilizado métodos analíticos y numéricos de manera combinada. En primer lugar, se han usado unos modelos para la predicción de la localización y la irradiación normal directa del sol junto a unas relaciones analíticas desarrolladas para estudiar el efecto de múltiples variables de diseño en la energía incidente sobre los espejos. Del mismo modo, se han obtenido analíticamente los errores debidos al llamado “off-axis aberration”, a la apertura de los rayos reflejados en los espejos y a las sombras y bloqueos entre espejos. Esto ha permitido la comparación de diferentes formas de espejo –planos, circulares o parabólicos–, así como el diseño preliminar de la localización y anchura de los espejos y receptor sin necesidad de costosos métodos numéricos. En segundo lugar, se ha desarrollado un modelo de trazado de rayos de Monte Carlo con el objetivo de comprobar la validez del estudio analítico, pero sobre todo porque este no es preciso en el estudio de la reflexión en espejos. El código desarrollado está específicamente ideado para colectores lineales Fresnel, lo que ha permitido la reducción del tiempo de cálculo en varios órdenes de magnitud en comparación con un programa comercial más general. Esto justifica el desarrollo de un nuevo código en lugar de la compra de una licencia de otro programa. El modelo ha sido usado primeramente para comparar la intensidad de flujo térmico y rendimiento de colectores Fresnel, con y sin reflector secundario, con los colectores cilíndrico parabólicos. Finalmente, la conjunción de los resultados obtenidos en el estudio analítico con el programa numérico ha sido usada para optimizar el campo solar para diferentes orientaciones –Norte-Sur y Este-Oeste–, diferentes localizaciones –Almería y Aswan–, diferentes inclinaciones hacia el Trópico –desde 0 deg hasta 32 deg– y diferentes mínimos de intensidad del flujo en el centro del receptor –10 kW/m2 y 25 kW/m2–. La presente tesis ha conducido a importantes descubrimientos que deben ser considerados a la hora de diseñar un campo solar Fresnel. En primer lugar, los espejos utilizados no deben ser plano, sino cilíndricos o parabólicos, ya que los espejos curvos implican mayores concentraciones y rendimiento. Por otro lado, se ha llegado a la conclusión de que la orientación Este-Oeste es más propicia para localizaciones con altas latitudes, como Almería, mientras que en zonas más cercanas a los trópicos como Aswan los campos Norte-Sur conducen a mayores rendimientos. Es de destacar que la orientación Este-Oeste requiere aproximadamente la mitad de espejos que los campos Norte-Sur, puediendo estar inclinados hacia los Trópicos para mejorar el rendimiento, y que alcanzan parecidos valores de intensidad térmica en el receptor todos los días a mediodía. Sin embargo, los campos con orientación Norte-Sur permiten un flujo más constante a lo largo de un día. Por último, ha sido demostrado que el uso de diseños pre-optimizados analíticamente, con anchura de espejos y espaciado entre espejos variables a lo ancho del campo, pueden implicar aumentos de la energía generada por metro cuadrado de espejos de hasta el 6%. El rendimiento óptico anual de los colectores cilíndrico parabólicos es 23 % mayor que el rendimiento de los campos Fresnel en Almería, mientras que la diferencia es de solo 9 % en Aswan. Ello implica que, para alcanzar el mismo precio de electricidad que la tecnología de referencia, la reducción de costes de instalación por metro cuadrado de espejo debe estar entre el 10 % y el 25 %, y que los colectores lineales Fresnel tienen más posibilidades de ser desarrollados en zonas de bajas latitudes. Como consecuencia de los estudios desarrollados en esta tesis se ha patentado un sistema de almacenamiento que tiene en cuenta la variación del flujo térmico en el receptor a lo largo del día, especialmente para campos con orientación Este-Oeste. Este invento permitiría el aprovechamiento de la energía incidente durante más parte del año, aumentando de manera apreciable los rendimientos óptico y térmico. Abstract Concentrating solar power is the common name of a technology based on capturing the thermal power of solar radiation, in a suitable way to reach temperatures able to activate a conventional (or advanced) thermodynamic cycle to generate electricity; this quest mainly depends on our ability to concentrate solar radiation in a cheap and efficient way. The present thesis is focused to highlight and help solving some of the important issues related to this problem. The need of reducing costs in concentrating the direct solar radiation, but without jeopardizing the thermodynamic objective of heating a fluid up to the required temperature, is of prime importance. Linear Fresnel collectors have been identified in the scientific literature as a technology with high potential to reach this cost reduction. This technology has been selected because of a number of reasons, particularly the degrees of freedom of this type of concentrating configuration and its current immature state. In order to respond to this challenge, a very detailed exercise has been carried out on the optical properties of linear Fresnel collectors. This has been done combining analytic and numerical methods. First, the effect of the design variables on the ratio of energy impinging onto the reflecting surface has been studied using analytically developed equations, together with models that predict the location and direct normal irradiance of the sun at any moment. Similarly, errors due to off-axis aberration, to the aperture of the reflected energy beam and to shading and blocking effects have been obtained analytically. This has allowed the comparison of different shapes of mirrors –flat, cylindrical or parabolic–, as well as a preliminary optimization of the location and width of mirrors and receiver with no need of time-consuming numerical models. Second, in order to prove the validity of the analytic results, but also due to the fact that the study of the reflection process is not precise enough when using analytic equations, a Monte Carlo Ray Trace model has been developed. The developed code is designed specifically for linear Fresnel collectors, which has reduced the computing time by several orders of magnitude compared to a wider commercial software. This justifies the development of the new code. The model has been first used to compare radiation flux intensities and efficiencies of linear Fresnel collectors, both multitube receiver and secondary reflector receiver technologies, with parabolic trough collectors. Finally, the results obtained in the analytic study together with the numeric model have used in order to optimize the solar field for different orientations –North-South and East-West–, different locations –Almería and Aswan–, different tilts of the field towards the Tropic –from 0 deg to 32 deg– and different flux intensity minimum requirements –10 kW/m2 and 25 kW/m2. This thesis work has led to several important findings that should be considered in the design of Fresnel solar fields. First, flat mirrors should not be used in any case, as cylindrical and parabolic mirrors lead to higher flux intensities and efficiencies. Second, it has been concluded that, in locations relatively far from the Tropics such as Almería, East-West embodiments are more efficient, while in Aswan North- South orientation leads to a higher annual efficiency. It must be noted that East-West oriented solar fields require approximately half the number of mirrors than NS oriented fields, can be tilted towards the Equator in order to increase the efficiency and attain similar values of flux intensity at the receiver every day at midday. On the other hand, in NS embodiments the flux intensity is more even during each single day. Finally, it has been proved that the use of analytic designs with variable shift between mirrors and variable width of mirrors across the field can lead to improvements in the electricity generated per reflecting surface square meter up to 6%. The annual optical efficiency of parabolic troughs has been found to be 23% higher than the efficiency of Fresnel fields in Almería, but it is only around 9% higher in Aswan. This implies that, in order to attain the same levelized cost of electricity than parabolic troughs, the required reduction of installation costs per mirror square meter is in the range of 10-25%. Also, it is concluded that linear Fresnel collectors are more suitable for low latitude areas. As a consequence of the studies carried out in this thesis, an innovative storage system has been patented. This system takes into account the variation of the flux intensity along the day, especially for East-West oriented solar fields. As a result, the invention would allow to exploit the impinging radiation along longer time every day, increasing appreciably the optical and thermal efficiencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear Fresnel collector arrays present some relevant advantages in the domain of concentrating solar power because of their simplicity, robustness and low capital cost. However, they also present important drawbacks and limitations, notably their average concentration ratio, which seems to limit significantly the performance of these systems. First, the paper addresses the problem of characterizing the mirror field configuration assuming hourly data of a typical year, in reference to a configuration similar to that of Fresdemo. For a proper comparative study, it is necessary to define a comparison criterion. In that sense, a new variable is defined, the useful energy efficiency, which only accounts for the radiation that impinges on the receiver with intensities above a reference value. As a second step, a comparative study between central linear Fresnel reflectors and compact linear Fresnel reflectors is carried out. This analysis shows that compact linear Fresnel reflectors minimize blocking and shading losses compared to a central configuration. However this minimization is not enough to overcome other negative effects of the compact Fresnel collectors, as the greater dispersion of the rays reaching the receiver, caused by the fact that mirrors must be located farther from the receiver, which yields to lower efficiencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Concentrating Solar Power (CSP) plants based on parabolic troughs utilize auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs. Methods A complete Life Cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35% of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative Energy Demands (CED) and Energy Payback Times (EPT) were also determined for each scenario. Results and discussion Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh, acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilization NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions. Conclusions Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilization. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The environmental performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) plant hybridised with different fuels was determined using a Life Cycle Assessment methodology. Six different scenarios were investigated, half of which involved hybridisation with fossil fuels (natural gas, coal and fuel oil), and the other three involved hybridisation with renewable fuels (wheat straw, wood pellets and biogas). Each scenario was compared to a solar-only operation. Nine different environmental categories as well as the Cumulative Energy Demand and the Energy Payback Time (EPT) were evaluated using Simapro software for 1 MWh of electricity produced. The results indicate a worse environmental performance for a CSP plant producing 12% of the electricity from fuel than in a solar-only operation for every indicator, except for the eutrophication and toxicity categories, whose results for the natural gas scenario are slightly better. In the climate change category, the results ranged between 26.9 and 187 kg CO2 eq/MWh, where a solar-only operation had the best results and coal hybridisation had the worst. Considering a weighted single score indicator, the environmental impact of the renewable fuels scenarios is approximately half of those considered in fossil fuels, with the straw scenario showing the best results, and the coal scenario the worstones. EPT for solar-only mode is 1.44 years, while hybridisation scenarios EPT vary in a range of 1.72 -1.83 years for straw and pellets respectively. The fuels with more embodied energy are biomethane and wood pellets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrating Solar Power (CSP) plants typically incorporate one or various auxiliary boilers operating in parallel to the solar field to facilitate start up operations, provide system stability, avoid freezing of heat transfer fluid (HTF) and increase generation capacity. The environmental performance of these plants is highly influenced by the energy input and the type of auxiliary fuel, which in most cases is natural gas (NG). Replacing the NG with biogas or biomethane (BM) in commercial CSP installations is being considered as a means to produce electricity that is fully renewable and free from fossil inputs. Despite their renewable nature, the use of these biofuels also generates environmental impacts that need to be adequately identified and quantified. This paper investigates the environmental performance of a commercial wet-cooled parabolic trough 50 MWe CSP plant in Spain operating according to two strategies: solar-only, with minimum technically viable energy non-solar contribution; and hybrid operation, where 12 % of the electricity derives from auxiliary fuels (as permitted by Spanish legislation). The analysis was based on standard Life Cycle Assessment (LCA) methodology (ISO 14040-14040). The technical viability and the environmental profile of operating the CSP plant with different auxiliary fuels was evaluated, including: NG; biogas from an adjacent plant; and BM withdrawn from the gas network. The effect of using different substrates (biowaste, sewage sludge, grass and a mix of biowaste with animal manure) for the production of the biofuels was also investigated. The results showed that NG is responsible for most of the environmental damage associated with the operation of the plant in hybrid mode. Replacing NG with biogas resulted in a significant improvement of the environmental performance of the installation, primarily due to reduced impact in the following categories: natural land transformation, depletion of fossil resources, and climate change. However, despite the renewable nature of the biofuels, other environmental categories like human toxicity, eutrophication, acidification and marine ecotoxicity scored higher when using biogas and BM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Linear Fresnel collectors are identified as a technology that should play a main role in order to reduce cost of Concentrating Solar Power. An optical and thermal analysis of the different blocks of the solar power plant is carried out, where Fresnel arrays are compared with the most extended linear technology: parabolic trough collectors. It is demonstrated that the optical performance of Fresnel array is very close to that of PTC, with similar values of maximum flux intensities. In addition, if the heat carrier fluid flows in series by the tubes of the receiver, relatively high thermal efficiencies are achieved. Thus, an annual solar to electricity efficiency of 19% is expected, which is similar to the state of the art in PTCs; this is done with a reduction of costs, thanks to lighter structures, that drives to an estimation of LCOE of around 6.5 c€/kWh.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the theoretical analysis of a storage integrated solar thermophotovoltaic (SISTPV) system operating in steady state. These systems combine thermophotovoltaic (TPV) technology and high temperature thermal storage phase-change materials (PCM) in the same unit, providing a great potential in terms of efficiency, cost reduction and storage energy density. The main attraction in the proposed system is its simplicity and modularity compared to conventional Concentrated Solar Power (CSP) technologies. This is mainly due to the absence of moving parts. In this paper we analyze the use of Silicon as the phase change material (PCM). Silicon is an excellent candidate because of its high melting point (1680 K) and its very high latent heat of fusion of 1800 kJ/kg, which is about ten times greater than the conventional PCMs like molten salts. For a simple system configuration, we have demonstrated that overall conversion efficiencies up to ?35% are approachable. Although higher efficiencies are expected by incorporating more advanced devices like multijunction TPV cells, narrow band selective emitters or adopting near-field TPV configurations as well as by enhancing the convective/conductive heat transfer within the PCM. In this paper, we also discuss about the optimum system configurations and provide the general guidelines for designing these systems. Preliminary estimates of night time operations indicate it is possible to achieve over 10 h of operation with a relatively small quantity of Silicon.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Este trabajo de fin de grado trata sobre el estudio de la energía solar de concentración en todos sus aspectos. Se han analizado sus tecnologías, así como posibles innovaciones que se puedan producir en los próximos años. También se va ha llevado a cabo un estudio de los costes actuales que conlleva el uso de este tipo de generación de energía, así como un análisis de las reducciones que pueden experimentar estos costes. Para poder realizar una comparación posterior con la energía solar fotovoltaica se ha escrito un capítulo dedicado exclusivamente a esta tecnología para conocer cuál es el estado actual. Además se ha realizado un análisis DAFO de los mercados que a priori puedan parecer más beneficiosos y que cuenten con un mayor potencial para el desarrollo de esta tecnología. A modo de conclusión para exponer la comparativa entre esta tecnología y la energía solar fotovoltaica se ha desarrollado un análisis de la viabilidad económica de dos plantas de estas tecnologías para comprobar en qué escenarios resulta más provechosa cada una de ellas. Al final se incluyen unas conclusiones extraídas del desarrollo del trabajo. Abstract This project concerns a study about every aspect about the concentrated solar power. Each type of technology has been analyzed as well as the possible innovations that may occur in the future. Also, the theme regarding the costs of this kind of power generation and an analysis dealing with the potential cost reduction that it may experience has been carried out. Then, in anticipation to do a comparative with the photovoltaic solar power, a whole chapter has been dedicated to this technology, to know what its actual state is. In addition, a SWOT analysis has also been carried out about the countries that at first sight might be a good option to develop the CSP. To conclude and to expose the comparative between these two technologies, a study about the economic viability of two power plants to know under what circumstances are each of them more profitable has been made. At the end some conclusions extracted from the development of this work have been included.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The engineering of solar power applications, such as photovoltaic energy (PV) or thermal solar energy requires the knowledge of the solar resource available for the solar energy system. This solar resource is generally obtained from datasets, and is either measured by ground-stations, through the use of pyranometers, or by satellites. The solar irradiation data are generally not free, and their cost can be high, in particular if high temporal resolution is required, such as hourly data. In this work, we present an alternative method to provide free hourly global solar tilted irradiation data for the whole European territory through a web platform. The method that we have developed generates solar irradiation data from a combination of clear-sky simulations and weather conditions data. The results are publicly available for free through Soweda, a Web interface. To our knowledge, this is the first time that hourly solar irradiation data are made available online, in real-time, and for free, to the public. The accuracy of these data is not suitable for applications that require high data accuracy, but can be very useful for other applications that only require a rough estimate of solar irradiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Energy storage at low maintenance cost is one of the key challenges for generating electricity from the solar energy. This paper presents the theoretical analysis (verified by CFD) of the night time performance of a recently proposed conceptual system that integrates thermal storage (via phase change materials) and thermophotovoltaics for power generation. These storage integrated solar thermophotovoltaic (SISTPV) systems are attractive owing to their simple design (no moving parts) and modularity compared to conventional Concentrated Solar Power (CSP) technologies. Importantly, the ability of high temperature operation of these systems allows the use of silicon (melting point of 1680 K) as the phase change material (PCM). Silicon's very high latent heat of fusion of 1800 kJ/kg and low cost ($1.70/kg), makes it an ideal heat storage medium enabling for an extremely high storage energy density and low weight modular systems. In this paper, the night time operation of the SISTPV system optimised for steady state is analysed. The results indicate that for any given PCM length, a combination of small taper ratio and large inlet hole-to-absorber area ratio are essential to increase the operation time and the average power produced during the night time. Additionally, the overall results show that there is a trade-off between running time and the average power produced during the night time. Average night time power densities as high as 30 W/cm(2) are possible if the system is designed with a small PCM length (10 cm) to operate just a few hours after sun-set, but running times longer than 72 h (3 days) are possible for larger lengths (50 cm) at the expense of a lower average power density of about 14 W/cm(2). In both cases the steady state system efficiency has been predicted to be about 30%. This makes SISTPV systems to be a versatile solution that can be adapted for operation in a broad range of locations with different climate conditions, even being used off-grid and in space applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las plantas solares fotovoltaicas, que son cada vez más habituales en nuestra sociedad, necesitan contar con un sistema de comunicaciones que permita la monitorización continua del funcionamiento de los diferentes equipos así como el control remoto de los mismos y la regulación de la producción. En este Proyecto se ha estudiado la estructura eléctrica y constructiva de una planta fotovoltaica genérica, prestando especial atención a los requerimientos que debe reunir el sistema de comunicaciones. El diseño del sistema de comunicaciones se ha realizado sobre una planta solar ficticia aún sin construir analizando su estructura sobre plano y aproximando la topología de red que se necesita implementar. Partiendo de esta estructura y de las cualidades de este tipo de instalaciones se ha realizado un análisis de las tecnologías disponibles, optando por una solución inalámbrica mixta, utilizando enlaces WiMAX y WiFi, manteniendo tecnología cableada únicamente para interconexión cercana de equipos. Esta elección se ha realizado con la intención de dotar a la planta de un sistema fiable, robusto y flexible sin descuidar el factor económico; para eso se ha cuidado la selección de equipamiento, su disposición en la planta y su configuración básica de funcionamiento. A partir de la solución definitiva se ha obtenido un presupuesto económico de la instalación. Se ha completado el diseño mediante simulaciones radioeléctricas, para asegurar un correcto funcionamiento de los diferentes enlaces. The photovoltaic solar power plants, which are becoming more common in our society, need a communications system that allowing continuous monitoring of the operation of the different devices as well as their remote control and regulation of the production. In this Project, electrical structure and construction of a generic photovoltaic solar plant have been studied, paying special attention to the essential requirements which must be fulfilled by the communication system. The communication system design is was carried out assuming that photovoltaic solar plant is fictitious and before its construction, analysing its structure over site plan and approximating the net topology in order to implement it. The analysis of the available technologies was performed basing on this structure as well as the qualities of this kind of facilities. As a result, a wireless mix option with WIMAX and WiFi links was chosen, using cable technology only to the close interconnection between equipments. This choice was made with the intention of giving the plant with a reliable, robust and flexible system without neglecting the economic factor, so that, the selection of equipment, the layout at the plant and operating basic configuration have been paid great attention. From the final solution is obtained a financial budget of the facility. Design is completed by radioelectric simulations to ensure the operation of the several links properly.