13 resultados para soft tissue injuries
em Universidad Politécnica de Madrid
Resumo:
In this work, robustness and stability of continuum damage models applied to material failure in soft tissues are addressed. In the implicit damage models equipped with softening, the presence of negative eigenvalues in the tangent elemental matrix degrades the condition number of the global matrix, leading to a reduction of the computational performance of the numerical model. Two strategies have been adapted from literature to improve the aforementioned computational performance degradation: the IMPL-EX integration scheme [Oliver,2006], which renders the elemental matrix contribution definite positive, and arclength-type continuation methods [Carrera,1994], which allow to capture the unstable softening branch in brittle ruptures. The IMPL-EX integration scheme has as a major drawback the need to use small time steps to keep numerical error below an acceptable value. A convergence study, limiting the maximum allowed increment of internal variables in the damage model, is presented. Finally, numerical simulation of failure problems with fibre reinforced materials illustrates the performance of the adopted methodology.
Resumo:
In this work, robustness and stability of continuum damage models applied to material failure in soft tissues are addressed. In the implicit damage models equipped with softening, the presence of negative eigenvalues in the tangent elemental matrix degrades the condition number of the global matrix, leading to a reduction of the computational performance of the numerical model. Two strategies have been adapted from literature to improve the aforementioned computational performance degradation: the IMPL-EX integration scheme [Oliver,2006], which renders the elemental matrix contribution definite positive, and arclength-type continuation methods [Carrera,1994], which allow to capture the unstable softening branch in brittle ruptures. The IMPL-EX integration scheme has as a major drawback the need to use small time steps to keep numerical error below an acceptable value. A convergence study, limiting the maximum allowed increment of internal variables in the damage model, is presented. Finally, numerical simulation of failure problems with fibre reinforced materials illustrates the performance of the adopted methodology.
Resumo:
Caracterización de los procesos de disipación mecánica basándose en la microestructura de los tejidos blandos. We present a continuous damage model with regularized softening (smeared crack models) for fiber reinforced soft tissues. Material parameters of the continuous model derive from the mesoscopic scale. In the mesoscopic scale continuum is considered as a collagenous fibrilreinforced composite. We want to study the continnumlevel response as a function of the nanoscale properties of the collagen and the adherent forces between the tropocollagen molecules.
Resumo:
Material properties of soft tissues are highly conditioned by the hierarchical structure of this kind of composites. These collagen-based tissues present a complex framework of fibres, fibrils, tropocollagen molecules and amino-acids. As the structural mechanisms that control the degradation of soft tissues are related with the behaviour of its fundamental constituents, the relationship between the molecular and intermolecular properties and the tissue behaviour needs to be studied.
Resumo:
Material properties of soft fibrous tissues are highly conditioned by the hierarchical structure of this kind of composites. Collagen based tissues present, at decreasing length scales, a complex framework of fibres, fibrils, tropocollagen molecules and amino-acids. Understanding the mechanical behaviour at nano-scale level is critical to accurately incorporate this structural information in phenomenological damage models. In this work we derive a relationship between the mechanical and geometrical properties of the fibril constituents and the soft tissue material parameters at macroscopic scale. A Hodge–Petruska two-dimensional model has been used to describe the fibrils as staggered arrays of tropocollagen molecules. After a mechanical characterisation of each of the fibril components, two fibril failures modes have been defined related with two planes of weakness. A phenomenological continuous damage model with regularised softening was presented along with meso-structurally based definitions for its material parameters. Finally, numerical analysis at fibril, fibre and tissue levels are presented to show the capabilities of the model
Resumo:
Se presenta una relación entre las propiedades mecánicas de los tejidos fibrados y las características geométricas y mecánicas de los fibriles que lo forman a escala mesoscópica. In this work we derive a relationship between the mechanical and geometrical properties of the fibril constituents and the soft tissue material parameters at macroscopic scale.
Resumo:
Human identification from a skull is a critical process in legal and forensic medicine, specially when no other means are available. Traditional clay-based methods attempt to generate the human face, in order to identify the corresponding person. However, these reconstructions lack of objectivity and consistence, since they depend on the practitioner. Current computerized techniques are based on facial models, which introduce undesired facial features when the final reconstruction is built. This paper presents an objective 3D craniofacial reconstruction technique, implemented in a graphic application, without using any facial template. The only information required by the software tool is the 3D image of the target skull and three parameters: age, gender and Body Mass Index (BMI) of the individual. Complexity is minimized, since the application database only consists of the anthropological information provided by soft tissue depth values in a set of points of the skull.
Resumo:
La planificación pre-operatoria se ha convertido en una tarea esencial en cirugías y terapias de marcada complejidad, especialmente aquellas relacionadas con órgano blando. Un ejemplo donde la planificación preoperatoria tiene gran interés es la cirugía hepática. Dicha planificación comprende la detección e identificación precisa de las lesiones individuales y vasos así como la correcta segmentación y estimación volumétrica del hígado funcional. Este proceso es muy importante porque determina tanto si el paciente es un candidato adecuado para terapia quirúrgica como la definición del abordaje a seguir en el procedimiento. La radioterapia de órgano blando es un segundo ejemplo donde la planificación se requiere tanto para la radioterapia externa convencional como para la radioterapia intraoperatoria. La planificación comprende la segmentación de tumor y órganos vulnerables y la estimación de la dosimetría. La segmentación de hígado funcional y la estimación volumétrica para planificación de la cirugía se estiman habitualmente a partir de imágenes de tomografía computarizada (TC). De igual modo, en la planificación de radioterapia, los objetivos de la radiación se delinean normalmente sobre TC. Sin embargo, los avances en las tecnologías de imagen de resonancia magnética (RM) están ofreciendo progresivamente ventajas adicionales. Por ejemplo, se ha visto que el ratio de detección de metástasis hepáticas es significativamente superior en RM con contraste Gd–EOB–DTPA que en TC. Por tanto, recientes estudios han destacado la importancia de combinar la información de TC y RM para conseguir el mayor nivel posible de precisión en radioterapia y para facilitar una descripción precisa de las lesiones del hígado. Con el objetivo de mejorar la planificación preoperatoria en ambos escenarios se precisa claramente de un algoritmo de registro no rígido de imagen. Sin embargo, la gran mayoría de sistemas comerciales solo proporcionan métodos de registro rígido. Las medidas de intensidad de voxel han demostrado ser criterios de similitud de imágenes robustos, y, entre ellas, la Información Mutua (IM) es siempre la primera elegida en registros multimodales. Sin embargo, uno de los principales problemas de la IM es la ausencia de información espacial y la asunción de que las relaciones estadísticas entre las imágenes son homogéneas a lo largo de su domino completo. La hipótesis de esta tesis es que la incorporación de información espacial de órganos al proceso de registro puede mejorar la robustez y calidad del mismo, beneficiándose de la disponibilidad de las segmentaciones clínicas. En este trabajo, se propone y valida un esquema de registro multimodal no rígido 3D usando una nueva métrica llamada Información Mutua Centrada en el Órgano (Organ-Focused Mutual Information metric (OF-MI)) y se compara con la formulación clásica de la Información Mutua. Esto permite mejorar los resultados del registro en áreas problemáticas incorporando información regional al criterio de similitud, beneficiándose de la disponibilidad real de segmentaciones en protocolos estándares clínicos, y permitiendo que la dependencia estadística entre las dos modalidades de imagen difiera entre órganos o regiones. El método propuesto se ha aplicado al registro de TC y RM con contraste Gd–EOB–DTPA así como al registro de imágenes de TC y MR para planificación de radioterapia intraoperatoria rectal. Adicionalmente, se ha desarrollado un algoritmo de apoyo de segmentación 3D basado en Level-Sets para la incorporación de la información de órgano en el registro. El algoritmo de segmentación se ha diseñado específicamente para la estimación volumétrica de hígado sano funcional y ha demostrado un buen funcionamiento en un conjunto de imágenes de TC abdominales. Los resultados muestran una mejora estadísticamente significativa de OF-MI comparada con la Información Mutua clásica en las medidas de calidad de los registros; tanto con datos simulados (p<0.001) como con datos reales en registro hepático de TC y RM con contraste Gd– EOB–DTPA y en registro para planificación de radioterapia rectal usando OF-MI multi-órgano (p<0.05). Adicionalmente, OF-MI presenta resultados más estables con menor dispersión que la Información Mutua y un comportamiento más robusto con respecto a cambios en la relación señal-ruido y a la variación de parámetros. La métrica OF-MI propuesta en esta tesis presenta siempre igual o mayor precisión que la clásica Información Mutua y consecuentemente puede ser una muy buena alternativa en aplicaciones donde la robustez del método y la facilidad en la elección de parámetros sean particularmente importantes. Abstract Pre-operative planning has become an essential task in complex surgeries and therapies, especially for those affecting soft tissue. One example where soft tissue preoperative planning is of high interest is liver surgery. It involves the accurate detection and identification of individual liver lesions and vessels as well as the proper functional liver segmentation and volume estimation. This process is very important because it determines whether the patient is a suitable candidate for surgical therapy and the type of procedure. Soft tissue radiation therapy is a second example where planning is required for both conventional external and intraoperative radiotherapy. It involves the segmentation of the tumor target and vulnerable organs and the estimation of the planned dose. Functional liver segmentations and volume estimations for surgery planning are commonly estimated from computed tomography (CT) images. Similarly, in radiation therapy planning, targets to be irradiated and healthy and vulnerable tissues to be protected from irradiation are commonly delineated on CT scans. However, developments in magnetic resonance imaging (MRI) technology are progressively offering advantages. For instance, the hepatic metastasis detection rate has been found to be significantly higher in Gd–EOB–DTPAenhanced MRI than in CT. Therefore, recent studies highlight the importance of combining the information from CT and MRI to achieve the highest level of accuracy in radiotherapy and to facilitate accurate liver lesion description. In order to improve those two soft tissue pre operative planning scenarios, an accurate nonrigid image registration algorithm is clearly required. However, the vast majority of commercial systems only provide rigid registration. Voxel intensity measures have been shown to be robust measures of image similarity, and among them, Mutual Information (MI) is always the first candidate in multimodal registrations. However, one of the main drawbacks of Mutual Information is the absence of spatial information and the assumption that statistical relationships between images are the same over the whole domain of the image. The hypothesis of the present thesis is that incorporating spatial organ information into the registration process may improve the registration robustness and quality, taking advantage of the clinical segmentations availability. In this work, a multimodal nonrigid 3D registration framework using a new Organ- Focused Mutual Information metric (OF-MI) is proposed, validated and compared to the classical formulation of the Mutual Information (MI). It allows improving registration results in problematic areas by adding regional information into the similitude criterion taking advantage of actual segmentations availability in standard clinical protocols and allowing the statistical dependence between the two modalities differ among organs or regions. The proposed method is applied to CT and T1 weighted delayed Gd–EOB–DTPA-enhanced MRI registration as well as to register CT and MRI images in rectal intraoperative radiotherapy planning. Additionally, a 3D support segmentation algorithm based on Level-Sets has been developed for the incorporation of the organ information into the registration. The segmentation algorithm has been specifically designed for the healthy and functional liver volume estimation demonstrating good performance in a set of abdominal CT studies. Results show a statistical significant improvement of registration quality measures with OF-MI compared to MI with both simulated data (p<0.001) and real data in liver applications registering CT and Gd–EOB–DTPA-enhanced MRI and in registration for rectal radiotherapy planning using multi-organ OF-MI (p<0.05). Additionally, OF-MI presents more stable results with smaller dispersion than MI and a more robust behavior with respect to SNR changes and parameters variation. The proposed OF-MI always presents equal or better accuracy than the classical MI and consequently can be a very convenient alternative within applications where the robustness of the method and the facility to choose the parameters are particularly important.
Resumo:
The production of aboveground soft tissue represents an important share of total net primary production in tropical rain forests. Here we draw from a large number of published and unpublished datasets (n = 81 sites) to assess the determinants of litterfall variation across South American tropical forests. We show that across old-growth tropical rainforests, litterfall averages 8.61±1.91Mgha?1 yr?1 (mean±standard deviation, in dry mass units). Secondary forests have a lower annual litterfall than old-growth tropical forests with a mean of 8.01±3.41Mgha?1 yr?1. Annual litterfall shows no significant variation with total annual rainfall, either globally or within forest types. It does not vary consistently with soil type, except in the poorest soils (white sand soils), where litterfall is significantly lower than in other soil types (5.42±1.91Mgha?1 yr?1). We also study the determinants of litterfall seasonality, and find that it does not depend on annual rainfall or on soil type. However, litterfall seasonality is significantly positively correlated with rainfall seasonality. Finally, we assess how much carbon is stored in reproductive organs relative to photosynthetic organs. Mean leaf fall is 5.74±1.83Mgha?1 yr?1 (71% of total litterfall). Mean allocation into reproductive organs is 0.69±0.40Mgha?1 yr?1 (9% of total litterfall). The investment into reproductive organs divided by leaf litterfall increases with soil fertility, suggesting that on poor soils, the allocation to photosynthetic organs is prioritized over that to reproduction. Finally, we discuss the ecological and biogeochemical implications of these results.
Resumo:
A novel method for generating patient-specific high quality conforming hexahedral meshes is presented. The meshes are directly obtained from the segmentation of patient magnetic resonance (MR) images of abdominal aortic aneu-rysms (AAA). The MRI permits distinguishing between struc-tures of interest in soft tissue. Being so, the contours of the lumen, the aortic wall and the intraluminal thrombus (ILT) are available and thus the meshes represent the actual anato-my of the patient?s aneurysm, including the layered morpholo-gies of these structures. Most AAAs are located in the lower part of the aorta and the upper section of the iliac arteries, where the inherent tortuosity of the anatomy and the presence of the ILT makes the generation of high-quality elements at the bifurcation is a challenging task. In this work we propose a novel approach for building quadrilateral meshes for each surface of the sectioned geometry, and generating conforming hexahedral meshes by combining the quadrilateral meshes. Conforming hexahedral meshes are created for the wall and the ILT. The resulting elements are evaluated on four patients? datasets using the Scaled Jacobian metric. Hexahedral meshes of 25,000 elements with 94.8% of elements well-suited for FE analysis are generated.
Resumo:
Esta tesis doctoral está encuadrada dentro del marco general de la ingeniería biomédica aplicada al tratamiento de las enfermedades cardiovasculares, enfermedades que provocan alrededor de 1.9 millones (40%) de muertes al año en la Unión Europea. En este contexto surge el proyecto europeo SCATh-Smart Catheterization, cuyo objetivo principal es mejorar los procedimientos de cateterismo aórtico introduciendo nuevas tecnologías de planificación y navegación quirúrgica y minimizando el uso de fluoroscopía. En particular, esta tesis aborda el modelado y diagnóstico de aneurismas aórticos abdominales (AAA) y del trombo intraluminal (TIL), allí donde esté presente, así como la segmentación de estas estructuras en imágenes preoperatorias de RM. Los modelos físicos específicos del paciente, construidos a partir de imágenes médicas preoperatorias, tienen múltiples usos, que van desde la evaluación preoperatoria de estructuras anatómicas a la planificación quirúrgica para el guiado de catéteres. En el diagnóstico y tratamiento de AAA, los modelos físicos son útiles a la hora de evaluar diversas variables biomecánicas y fisiológicas de las estructuras vasculares. Existen múltiples técnicas que requieren de la generación de modelos físicos que representen la anatomía vascular. Una de las principales aplicaciones de los modelos físicos es el análisis de elementos finitos (FE). Las simulaciones de FE para AAA pueden ser específicas para el paciente y permiten modelar estados de estrés complejos, incluyendo los efectos provocados por el TIL. La aplicación de métodos numéricos de análisis tiene como requisito previo la generación de una malla computacional que representa la geometría de interés mediante un conjunto de elementos poliédricos, siendo los hexaédricos los que presentan mejores resultados. En las estructuras vasculares, generar mallas hexaédricas es un proceso especialmente exigente debido a la compleja anatomía 3D ramificada. La mayoría de los AAA se encuentran situados en la bifurcación de la arteria aorta en las arterias iliacas y es necesario modelar de manera fiel dicha bifurcación. En el caso de que la sangre se estanque en el aneurisma provocando un TIL, éste forma una estructura adyacente a la pared aórtica. De este modo, el contorno externo del TIL es el mismo que el contorno interno de la pared, por lo que las mallas resultantes deben reflejar esta particularidad, lo que se denomina como "mallas conformadas". El fin último de este trabajo es modelar las estructuras vasculares de modo que proporcionen nuevas herramientas para un mejor diagnóstico clínico, facilitando medidas de riesgo de rotura de la arteria, presión sistólica o diastólica, etc. Por tanto, el primer objetivo de esta tesis es diseñar un método novedoso y robusto para generar mallas hexaédricas tanto de la pared aórtica como del trombo. Para la identificación de estas estructuras se utilizan imágenes de resonancia magnética (RM). Deben mantenerse sus propiedades de adyacencia utilizando elementos de alta calidad, prestando especial atención al modelado de la bifurcación y a que sean adecuadas para el análisis de FE. El método tiene en cuenta la evolución de la línea central del vaso en el espacio tridimensional y genera la malla directamente a partir de las imágenes segmentadas, sin necesidad de reconstruir superficies triangulares. Con el fin de reducir la intervención del usuario en el proceso de generación de las mallas, es también objetivo de esta tesis desarrollar un método de segmentación semiautomática de las distintas estructuras de interés. Las principales contribuciones de esta tesis doctoral son: 1. El diseño, implementación y evaluación de un algoritmo de generación de mallas hexaédricas conformadas de la pared y el TIL a partir de los contornos segmentados en imágenes de RM. Se ha llevado a cabo una evaluación de calidad que determine su aplicabilidad a métodos de FE. Los resultados demuestran que el algoritmo desarrollado genera mallas conformadas de alta calidad incluso en la región de la bifurcación, que son adecuadas para su uso en métodos de análisis de FE. 2. El diseño, implementación y evaluación de un método de segmentación automático de las estructuras de interés. La luz arterial se segmenta de manera semiautomática utilizando un software disponible a partir de imágenes de RM con contraste. Los resultados de este proceso sirven de inicialización para la segmentación automática de las caras interna y externa de la pared aórtica utilizando métodos basado en modelos de textura y forma a partir de imágenes de RM sin contraste. Los resultados demuestran que el algoritmo desarrollado proporciona segmentaciones fieles de las distintas estructuras de interés. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como aportación para futuros avances en la generación de modelos físicos de geometrías biológicas. ABSTRACT The frame of this PhD Thesis is the biomedical engineering applied to the treatment of cardiovascular diseases, which cause around 1.9 million deaths per year in the European Union and suppose about 40% of deaths per year. In this context appears the European project SCATh-Smart Catheterization. The main objective of this project is creating a platform which improves the navigation of catheters in aortic catheterization minimizing the use of fluoroscopy. In the framework of this project, the specific field of this PhD Thesis is the diagnosis and modeling of abdominal aortic aneurysm (AAAs) and the intraluminal thrombus (ILT) whenever it is present. Patient-specific physical models built from preoperative imaging are becoming increasingly important in the area of minimally invasive surgery. These models can be employed for different purposes, such as the preoperatory evaluation of anatomic structures or the surgical planning for catheter guidance. In the specific case of AAA diagnosis and treatment, physical models are especially useful for evaluating pressures over vascular structures. There are multiple techniques that require the generation of physical models which represent the target anatomy. Finite element (FE) analysis is one the principal applications for physical models. FE simulations for AAA may be patient-specific and allow modeling biomechanical and physiological variables including those produced by ILT, and also the segmentation of those anatomical structures in preoperative MR images. Applying numeric methods requires the generation of a proper computational mesh. These meshes represent the patient anatomy using a set of polyhedral elements, with hexahedral elements providing better results. In the specific case of vascular structures, generating hexahedral meshes is a challenging task due to the complex 3D branching anatomy. Each patient’s aneurysm is unique, characterized by its location and shape, and must be accurately represented for subsequent analyses to be meaningful. Most AAAs are located in the region where the aorta bifurcates into the iliac arteries and it is necessary to model this bifurcation precisely and reliably. If blood stagnates in the aneurysm and forms an ILT, it exists as a conforming structure with the aortic wall, i.e. the ILT’s outer contour is the same as the wall’s inner contour. Therefore, resulting meshes must also be conforming. The main objective of this PhD Thesis is designing a novel and robust method for generating conforming hexahedral meshes for the aortic wall and the thrombus. These meshes are built using largely high-quality elements, especially at the bifurcation, that are suitable for FE analysis of tissue stresses. The method accounts for the evolution of the vessel’s centerline which may develop outside a single plane, and generates the mesh directly from segmented images without the requirement to reconstruct triangular surfaces. In order to reduce the user intervention in the mesh generation process is also a goal of this PhD. Thesis to develop a semiautomatic segmentation method for the structures of interest. The segmentation is performed from magnetic resonance image (MRI) sequences that have tuned to provide high contrast for the arterial tissue against the surrounding soft tissue, so that we determine the required information reliably. The main contributions of this PhD Thesis are: 1. The design, implementation and evaluation of an algorithm for generating hexahedral conforming meshes of the arterial wall and the ILT from the segmented contours. A quality inspection has been applied to the meshes in order to determine their suitability for FE methods. Results show that the developed algorithm generates high quality conforming hexahedral meshes even at the bifurcation region. Thus, these meshes are suitable for FE analysis. 2. The design, implementation and evaluation of a semiautomatic segmentation method for the structures of interest. The lumen is segmented in a semiautomatic way from contrast filled MRI using an available software. The results obtained from this process are used to initialize the automatic segmentation of the internal and external faces of the aortic wall. These segmentations are performed by methods based on texture and shape models from MRI with no contrast. The results show that the algorithm provides faithful segmentations of the structures of interest requiring minimal user intervention. In conclusion, the work undertaken in this PhD. Thesis verifies the investigation hypotheses. It intends to serve as basis for future physical model generation of proper biological anatomies used by numerical methods.
Resumo:
In order to perform finite element (FE) analyses of patient-specific abdominal aortic aneurysms, geometries derived from medical images must be meshed with suitable elements. We propose a semi-automatic method for generating conforming hexahedral meshes directly from contours segmented from medical images. Magnetic resonance images are generated using a protocol developed to give the abdominal aorta high contrast against the surrounding soft tissue. These data allow us to distinguish between the different structures of interest. We build novel quadrilateral meshes for each surface of the sectioned geometry and generate conforming hexahedral meshes by combining the quadrilateral meshes. The three-layered morphology of both the arterial wall and thrombus is incorporated using parameters determined from experiments. We demonstrate the quality of our patient-specific meshes using the element Scaled Jacobian. The method efficiently generates high-quality elements suitable for FE analysis, even in the bifurcation region of the aorta into the iliac arteries. For example, hexahedral meshes of up to 125,000 elements are generated in less than 130 s, with 94.8 % of elements well suited for FE analysis. We provide novel input for simulations by independently meshing both the arterial wall and intraluminal thrombus of the aneurysm, and their respective layered morphologies.
Resumo:
Cell-based therapy is a promising approach for many diseases, including ischemic heart disease. Cardiac mesoangioblasts are committed vessel-associated progenitors that can restore to a significant, although partial, extent, heart structure and function in a murine model of myocardial infarction. Low-intensity pulsed ultrasound (LIPUS) is a noninvasive form of mechanical energy that can be delivered into biological tissues as acoustic pressure waves, and is widely used for clinical applications including bone fracture healing. We hypothesized that the positive effects of LIPUS on bone and soft tissue, such as increased cell differentiation and cytoskeleton reorganization, could be applied to increase the therapeutic potential of mesoangioblasts for heart repair. In this work, we show that LIPUS stimulation of cardiac mesoangioblasts isolated from mouse and human heart results in significant cellular modifications that provide beneficial effects to the cells, including increased malleability and improved motility. Additionally, LIPUS stimulation increased the number of binucleated cells and induced cardiac differentiation to an extent comparable with 5´-azacytidine treatment. Mechanistically, LIPUS stimulation activated the BMP-Smad signalling pathway and increased the expression of myosin light chain-2 together with upregulation of β1 integrin and RhoA, highlighting a potentially important role for cytoskeleton reorganization. Taken together, these results provide functional evidence that LIPUS might be a useful tool to explore in the field of heart cell therapy