20 resultados para sociala band
em Universidad Politécnica de Madrid
Resumo:
This doctoral thesis explores some of the possibilities that near-field optics can bring to photovoltaics, and in particular to quantum-dot intermediate band solar cells (QD-IBSCs). Our main focus is the analytical optimization of the electric field distribution produced in the vicinity of single scattering particles, in order to produce the highest possible absorption enhancement in the photovoltaic medium in their surroundings. Near-field scattering structures have also been fabricated in laboratory, allowing the application of the previously studied theoretical concepts to real devices. We start by looking into the electrostatic scattering regime, which is only applicable to sub-wavelength sized particles. In this regime it was found that metallic nano-spheroids can produce absorption enhancements of about two orders of magnitude on the material in their vicinity, due to their strong plasmonic resonance. The frequency of such resonance can be tuned with the shape of the particles, allowing us to match it with the optimal transition energies of the intermediate band material. Since these metallic nanoparticles (MNPs) are to be inserted inside the cell photovoltaic medium, they should be coated by a thin insulating layer to prevent electron-hole recombination at their surface. This analysis is then generalized, using an analytical separation-of-variables method implemented in Mathematica7.0, to compute scattering by spheroids of any size and material. This code allowed the study of the scattering properties of wavelengthsized particles (mesoscopic regime), and it was verified that in this regime dielectric spheroids perform better than metallic. The light intensity scattered from such dielectric spheroids can have more than two orders of magnitude than the incident intensity, and the focal region in front of the particle can be shaped in several ways by changing the particle geometry and/or material. Experimental work was also performed in this PhD to implement in practice the concepts studied in the analysis of sub-wavelength MNPs. A wet-coating method was developed to self-assemble regular arrays of colloidal MNPs on the surface of several materials, such as silicon wafers, amorphous silicon films, gallium arsenide and glass. A series of thermal and chemical tests have been performed showing what treatments the nanoparticles can withstand for their embedment in a photovoltaic medium. MNPs arrays are then inserted in an amorphous silicon medium to study the effect of their plasmonic near-field enhancement on the absorption spectrum of the material. The self-assembled arrays of MNPs constructed in these experiments inspired a new strategy for fabricating IBSCs using colloidal quantum dots (CQDs). Such CQDs can be deposited in self-assembled monolayers, using procedures similar to those developed for the patterning of colloidal MNPs. The use of CQDs to form the intermediate band presents several important practical and physical advantages relative to the conventional dots epitaxially grown by the Stranski-Krastanov method. Besides, this provides a fast and inexpensive method for patterning binary arrays of QDs and MNPs, envisioned in the theoretical part of this thesis, in which the MNPs act as antennas focusing the light in the QDs and therefore boosting their absorption
Resumo:
An intermediate-bandphotovoltaicmaterial, which has an isolated metallic band located between the top of the valence band and bottom of the conduction band of some semiconductors, has been proposed as third generation solar cell to be used in photovoltaic applications. Density functional theory calculations of Zn in CuGaS2:Ti have previously shown that, the intermediate-band position can be modulated in proportion of Zn insertion in such a way that increasing Zn concentration can lead to aband-gap reduction, and an adjustment of the intermediate-band position. This could be interesting in the formation of an intermediate-bandmaterial, that has the maximum efficiency theoretically predicted for the intermediate-band solar cell. In this work, the energetics of several reaction schemes that could lead to the decomposition of the modulated intermediate-bandphotovoltaicmaterial, CuGaS2:Ti:Zn, is studied in order to assess the thermodynamic stability of this material. Calculations of the total free energy and disorder entropy have been taken into account, to get the reaction energy and free energy of the compound decomposition, which is found to be thermodynamically favorable
Resumo:
The intermediatebandsolarcell (IBSC) is a photovoltaic device with a theoretical conversion efficiency limit of 63.2%. In recent years many attempts have been made to fabricate an intermediateband material which behaves as the theory states. One characteristic feature of an IBSC is its luminescence spectrum. In this work the temperature dependence of the photoluminescence (PL) and electroluminescence (EL) spectra of InAs/GaAs QD-IBSCs together with their reference cell have been studied. It is shown that EL measurements provide more reliable information about the behaviour of the IB material inside the IBSC structure than PL measurements. At low temperatures, the EL spectra are consistent with the quasi-Fermi level splits described by the IBSC model, whereas at room temperature they are not. This result is in agreement with previously reported analysis of the quantum efficiency of the solarcells
Resumo:
To achieve high efficiency, the intermediate band (IB) solar cell must generate photocurrent from sub-bandgap photons at a voltage higher than that of a single contributing sub-bandgap photon. To achieve the latter, it is necessary that the IB levels be properly isolated from the valence and conduction bands. We prove that this is not the case for IB cells formed with the confined levels of InAs quantum dots (QDs) in GaAs grown so far due to the strong density of internal thermal photons at the transition energies involved. To counteract this, the QD must be smaller.
Resumo:
The antenna presented in this article will be developed for satellite communications onboard systems based on the recommendations ITU-R S.580-6 and ITU-R S.465-5. The antenna consists of printed elements grouped in an array, this terminal works in a frequency band from 7.25 up to 8.4 GHz (14.7% of bandwidth), where both bands, reception (7.25 - 7.75 GHz) and transmission (7.9 - 8.4 GHz), are included simultaneously. The antenna reaches a gain about 31 dBi, and it has a radiation pattern with a beamwidth smaller than 10° and a dual circular polarization. The antenna has the capability to steer in elevation from 90° to 40° electronically and 360° in azimuth with a motorized junction.
Resumo:
This work provides the development of an antenna for satellite communications onboard systems based on the recommendations ITU-R S.580-6 [1] and ITU-R S.465-5 [2]. The antenna consists of printed elements grouped in an array, working in a frequency band from 7.25 up to 8.4 GHz (15% of bandwidth). In this working band, transmission and reception are included simultaneously. The antenna reaches a gain about 31 dBi, has a radiation pattern with a beam width smaller than 10oand dual circular polarization. It has the capability to steer in elevation through a Butler matrix to 45
Resumo:
We propose a new kind of quantum dot (QD) materials for the implementation of the intermediate band solar cell (IBSC) [1]. The materials are formed by lead salt QDs of the family IV-VI (PbTe, PbSe or PbS) embedded in a semiconductor of the family II-VI (Cd1-xMgxTe, CdxZn1-xTe, and CdS1-xSex or ZnSe1-xTex, respectively). These QDs are not nucleated due to lattice mismatch, as it is the case of the InAs/GaAs QD material system grown by the Stranski-Krastanov (S-K) mode. In these materials, the QDs precipitate due to the difference in lattice type: the QD lead salt material crystallizes in the rocksalt structure, while the II-VI host material has the zincblende structure [2]. Therefore, it is possible to use lattice-matched QD/host combinations, avoiding all the strain-related problems found in previous QD-IBSC developments. In this paper we discuss the properties of the lead salt QD materials and propose that they are appropriate to overcome the fundamental drawbacks of present III-V-based QD-IBSC prototypes. We also calculate the band diagram for some examples of IV-VI/II-VI QD materials. The detailed balance efficiency limit of QD-IBSCs based on the studied materials is found to be over 60% under maximum concentration.
Resumo:
The intermediate band (IB) solar cell (Fig. 1) has been proposed [1] to increase photovoltaic efficiency by a factor above 1.5, based on the absorption of two sub-bandgap photons to promote an electron across the bandgap. To realize this principle, that can be applied also to obtain efficient photocatalysis with sunlight, we proposed in recent years several materials where a metal or heavy element, substituting for an electropositive atom in a known semiconductor that has an appropriate band gap width (around 2 eV), forms inside the gap the partially filled levels needed for this aim
Resumo:
This letter presents a novel recursive active filter topology that provides dual-band performance, with independent tuning capability in both bands. The dual-band operation is achieved by using two independent feedback lines. Additionally, linear phase shifters based on left-handed cells are included in these two branches in order to tune the center frequency of both pass bands.
Resumo:
The intermediate band solar cell [1] has been proposed as a concept able to substantially enhance the efficiency limit of an ordinary single junction solar cell. If a band permitted for electrons is inserted within the forbidden band of a semiconductor then a novel path for photo generation is open: electron hole pairs may be formed by the successive absorption of two sub band gap photons using the intermediate band (IB) as a stepping stone. While the increase of the photovoltaic (PV) current is not a big achievement —it suffices to reduce the band gap— the achievement of this extra current at high voltage is the key of the IB concept. In ordinary cells the voltage is limited by the band gap so that reducing it would also reduce the band gap. In the intermediate band solar cell the high voltage is produced when the IB is permitted to have a Quasi Fermi Level (QFL) different from those of the Conduction Band (CB) and the Valence Band (VB). For it the cell must be properly isolated from the external contacts, which is achieved by putting the IB material between two n- and p-type ordinary semiconductors [2]. Efficiency thermodynamic limit of 63% is obtained for the IB solar cell1 vs. the 40% obtained [3] for ordinary single junction solar cells. Detailed information about the IB solar cells can be found elsewhere [4].
Resumo:
In this document a microstrip constrained lens device for Ku band, for microwave purpose, is presented. This paper offers an overview of artificial lens-type devices and the proposed transmitarray lens is thoroughly studied in terms of design and manufacturing, with architecture discussion and selection, along with the design, manufacturing and validation of all the forming components of the transmitarray (transmission circuits, radiating elements, etc.). Each element is properly characterized and assembled properly in the complete transmitarray prototype. Eventually, radiation pattern measurements as well as gain and directivity values, are provided to show the proper behaviour of the proposed transmitarray lens.
Resumo:
A planar antenna is introduced that works as a portable system for X-band satellite communications. This antenna is low-profile and modular with dimensions of 40 × 40 × 2.5 × cm. It is composed of a square array of 144 printed circuit elements that cover a wide bandwidth (14.7%) for transmission and reception along with dual and interchangeable circular polarization. A radiation efficiency above 50% is achieved by a low-loss stripline feeding network. This printed antenna has a 3 dB beamwidth of 5°, a maximum gain of 26 dBi and an axial ratio under 1.9 dB over the entire frequency band. The complete design of the antenna is shown, and the measurements are compared with simulations to reveal very good agreement.
Resumo:
The aim of this work is the theoretical study of the band alignment between the two components of a hybrid organic-inorganic solar-cell. The working organic molecules are metal tetra-sulphonated phthalocyanines (M-Pc) and the inorganic material is nano-porous ZnO growth in the 001 direction. The theoretical calculations are being made using the density functional theory (DFT) using a GGA functional with the SIESTA code, which projects electron wave functions and density onto a real space grid and uses as basis set a linear combination of numerical, finite-range localized atomic orbitals. We also used the DFT+U method included in the code that allows a semi-empirical inclusion of electronic correlations in the description of electronic spectra for systems such as zinc oxide.
Resumo:
This work describes the performance of AlN-based bulk acoustic wave resonators built on top of insulating acoustic reflectors and operating at around 8 GHz. The acoustic reflectors are composed of alternate layers of amorphous Ta2O5and SiO2 deposited at room temperature by pulsed-DC reactive sputtering in Ar/O2 atmospheres. SiO2 layers have a porous structure that provides a low acoustic impedance of only 9.5 MRayl. Ta2O5 films exhibit an acoustic impedance of around 39.5 MRayl that was assessed by the picoseconds acoustic technique These values allow to design acoustic mirrors with transmission coefficients in the centre of the band lower than -40 dB (99.998 % of reflectance) with only seven layers. The resonators were fabricated by depositing a very thin AlN film onto an iridium bottom electrode 180 nm-thick and by using Ir or Mo layers as top electrode. Resonators with effective electromechanical coupling factors of 5.7% and quality factors at the antiresonant frequency around 600 are achieved.
Resumo:
The development of high efficiency laser diodes (LD) and light emitting diodes (LED) covering the 1.0 to 1.55 μm region of the spectra using GaAs heteroepitaxy has been long pursued. Due to the lack of materials that can be grown lattice-macthed to GaAs with bandgaps in the 1.0 to 1.55 μm region, quantum wells (QW) or quantum dots (QD) need be used. The most successful approach with QWs has been to use InGaAs, but one needs to add another element, such as N, to be able to reach 1.3/1.5μm. Even though LDs have been successfully demonstrated with the QW approach, using N leads to problems with compositional homogeneity across the wafer, and limited efficiency due to strong non-radiative recombination. The alternative approach of using InAs QDs is an attractive option, but once again, to reach the longest wavelengths one needs very large QDs and control over the size distribution and band alignment. In this work we demonstrate InAs/GaAsSb QDLEDs with high efficiencies, emitting from 1.1 to 1.52 μm, and we analyze the band alignment and carrier loss mechanisms that result from the presence of Sb in the capping layer.