12 resultados para singular value decomposition (SVD)
em Universidad Politécnica de Madrid
Resumo:
Se presenta un nuevo método de diseño conceptual en Ingeniería Aeronáutica basado el uso de modelos reducidos, también llamados modelos sustitutos (‘surrogates’). Los ingredientes de la función objetivo se calculan para cada indiviudo mediante la utilización de modelos sustitutos asociados a las distintas disciplinas técnicas que se construyen mediante definiciones de descomposición en valores singulares de alto orden (HOSVD) e interpolaciones unidimensionales. Estos modelos sustitutos se obtienen a partir de un número limitado de cálculos CFD. Los modelos sustitutos pueden combinarse, bien con un método de optimización global de tipo algoritmo genético, o con un método local de tipo gradiente. El método resultate es flexible a la par que mucho más eficiente, computacionalmente hablando, que los modelos convencionales basados en el cálculo directo de la función objetivo, especialmente si aparecen un gran número de parámetros de diseño y/o de modelado. El método se ilustra considerando una versión simplificada del diseño conceptual de un avión. Abstract An optimization method for conceptual design in Aeronautics is presented that is based on the use of surrogate models. The various ingredients in the target function are calculated for each individual using surrogates of the associated technical disciplines that are constructed via high order singular value decomposition and one dimensional interpolation. These surrogates result from a limited number of CFD calculated snapshots. The surrogates are combined with an optimization method, which can be either a global optimization method such as a genetic algorithm or a local optimization method, such as a gradient-like method. The resulting method is both flexible and much more computationally efficient than the conventional method based on direct calculation of the target function, especially if a large number of free design parameters and/or tunablemodeling parameters are present. The method is illustrated considering a simplified version of the conceptual design of an aircraft empennage.
Resumo:
Esta Tesis se centra en el desarrollo de un método para la reconstrucción de bases de datos experimentales incompletas de más de dos dimensiones. Como idea general, consiste en la aplicación iterativa de la descomposición en valores singulares de alto orden sobre la base de datos incompleta. Este nuevo método se inspira en el que ha servido de base para la reconstrucción de huecos en bases de datos bidimensionales inventado por Everson y Sirovich (1995) que a su vez, ha sido mejorado por Beckers y Rixen (2003) y simultáneamente por Venturi y Karniadakis (2004). Además, se ha previsto la adaptación de este nuevo método para tratar el posible ruido característico de bases de datos experimentales y a su vez, bases de datos estructuradas cuya información no forma un hiperrectángulo perfecto. Se usará una base de datos tridimensional de muestra como modelo, obtenida a través de una función transcendental, para calibrar e ilustrar el método. A continuación se detalla un exhaustivo estudio del funcionamiento del método y sus variantes para distintas bases de datos aerodinámicas. En concreto, se usarán tres bases de datos tridimensionales que contienen la distribución de presiones sobre un ala. Una se ha generado a través de un método semi-analítico con la intención de estudiar distintos tipos de discretizaciones espaciales. El resto resultan de dos modelos numéricos calculados en C F D . Por último, el método se aplica a una base de datos experimental de más de tres dimensiones que contiene la medida de fuerzas de una configuración ala de Prandtl obtenida de una campaña de ensayos en túnel de viento, donde se estudiaba un amplio espacio de parámetros geométricos de la configuración que como resultado ha generado una base de datos donde la información está dispersa. ABSTRACT A method based on an iterative application of high order singular value decomposition is derived for the reconstruction of missing data in multidimensional databases. The method is inspired by a seminal gappy reconstruction method for two-dimensional databases invented by Everson and Sirovich (1995) and improved by Beckers and Rixen (2003) and Venturi and Karniadakis (2004). In addition, the method is adapted to treat both noisy and structured-but-nonrectangular databases. The method is calibrated and illustrated using a three-dimensional toy model database that is obtained by discretizing a transcendental function. The performance of the method is tested on three aerodynamic databases for the flow past a wing, one obtained by a semi-analytical method, and two resulting from computational fluid dynamics. The method is finally applied to an experimental database consisting in a non-exhaustive parameter space measurement of forces for a box-wing configuration.
Resumo:
Esta Tesis presenta un nuevo método para filtrar errores en bases de datos multidimensionales. Este método no precisa ninguna información a priori sobre la naturaleza de los errores. En concreto, los errrores no deben ser necesariamente pequeños, ni de distribución aleatoria ni tener media cero. El único requerimiento es que no estén correlados con la información limpia propia de la base de datos. Este nuevo método se basa en una extensión mejorada del método básico de reconstrucción de huecos (capaz de reconstruir la información que falta de una base de datos multidimensional en posiciones conocidas) inventado por Everson y Sirovich (1995). El método de reconstrucción de huecos mejorado ha evolucionado como un método de filtrado de errores de dos pasos: en primer lugar, (a) identifica las posiciones en la base de datos afectadas por los errores y después, (b) reconstruye la información en dichas posiciones tratando la información de éstas como información desconocida. El método resultante filtra errores O(1) de forma eficiente, tanto si son errores aleatorios como sistemáticos e incluso si su distribución en la base de datos está concentrada o esparcida por ella. Primero, se ilustra el funcionamiento delmétodo con una base de datosmodelo bidimensional, que resulta de la dicretización de una función transcendental. Posteriormente, se presentan algunos casos prácticos de aplicación del método a dos bases de datos tridimensionales aerodinámicas que contienen la distribución de presiones sobre un ala a varios ángulos de ataque. Estas bases de datos resultan de modelos numéricos calculados en CFD. ABSTRACT A method is presented to filter errors out in multidimensional databases. The method does not require any a priori information about the nature the errors. In particular, the errors need not to be small, neither random, nor exhibit zero mean. Instead, they are only required to be relatively uncorrelated to the clean information contained in the database. The method is based on an improved extension of a seminal iterative gappy reconstruction method (able to reconstruct lost information at known positions in the database) due to Everson and Sirovich (1995). The improved gappy reconstruction method is evolved as an error filtering method in two steps, since it is adapted to first (a) identify the error locations in the database and then (b) reconstruct the information in these locations by treating the associated data as gappy data. The resultingmethod filters out O(1) errors in an efficient fashion, both when these are random and when they are systematic, and also both when they concentrated and when they are spread along the database. The performance of the method is first illustrated using a two-dimensional toymodel database resulting fromdiscretizing a transcendental function and then tested on two CFD-calculated, three-dimensional aerodynamic databases containing the pressure coefficient on the surface of a wing for varying values of the angle of attack. A more general performance analysis of the method is presented with the intention of quantifying the randomness factor the method admits maintaining a correct performance and secondly, quantifying the size of error the method can detect. Lastly, some improvements of the method are proposed with their respective verification.
Resumo:
The method presented in this paper addresses the problem of voltage sag state estimation (VSSE). The problem consists in estimating the voltage sags frequency at non-monitored buses from the number of sags measured at monitored sites. Usually, due to limitations on the number of available voltage sag monitors, this is an underdetermined problem. In this approach, the mathematical formulation presented is based on the fault positions concept and is solved by means of the Singular Value Decomposition (SVD) technique. The proposed estimation method has been validated by using the IEEE 118 test system and the results obtained have been very satisfactory.
Resumo:
MIMO techniques allow increasing wireless channel performance by decreasing the BER and increasing the channel throughput and in consequence are included in current mobile communication standards. MIMO techniques are based on benefiting the existence of multipath in wireless communications and the application of appropriate signal processing techniques. The singular value decomposition (SVD) is a popular signal processing technique which, based on the perfect channel state information (PCSI) knowledge at both the transmitter and receiver sides, removes inter-antenna interferences and improves channel performance. Nevertheless, the proximity of the multiple antennas at each front-end produces the so called antennas correlation effect due to the similarity of the various physical paths. In consequence, antennas correlation drops the MIMO channel performance. This investigation focuses on the analysis of a MIMO channel under transmitter-side antennas correlation conditions. First, antennas correlation is analyzed and characterized by the correlation coefficients. The analysis describes the relation between antennas correlation and the appearance of predominant layers which significantly affect the channel performance. Then, based on the SVD, pre- and post-processing is applied to remove inter-antenna interferences. Finally, bit- and power allocation strategies are applied to reach the best performance. The resulting BER reveals that antennas correlation effect diminishes the channel performance and that not necessarily all MIMO layers must be activated to obtain the best performance.
Resumo:
Singular-value decomposition (SVD)-based multiple-input multiple output (MIMO) systems, where the whole MIMO channel is decomposed into a number of unequally weighted single-input single-output (SISO) channels, have attracted a lot of attention in the wireless community. The unequal weighting of the SISO channels has led to intensive research on bit- and power allocation even in MIMO channel situation with poor scattering conditions identified as the antennas correlation effect. In this situation, the unequal weighting of the SISO channels becomes even much stronger. In comparison to the SVD-assisted MIMO transmission, geometric mean decomposition (GMD)-based MIMO systems are able to compensate the drawback of weighted SISO channels when using SVD, where the decomposition result is nearly independent of the antennas correlation effect. The remaining interferences after the GMD-based signal processing can be easily removed by using dirty paper precoding as demonstrated in this work. Our results show that GMD-based MIMO transmission has the potential to significantly simplify the bit and power loading processes and outperforms the SVD-based MIMO transmission as long as the same QAM-constellation size is used on all equally-weighted SISO channels.
Resumo:
El flameo o flutter es un fenómeno vibratorio debido a la interacción de fuerzas inerciales, elásticas y aerodinámicas. Consiste en un intercambio de energía, que se puede observar en el cambio de amortiguamientos, entre dos o más modos estructurales, denominados modos críticos, cuyas frecuencias tienden a acercarse (coalescencia de frecuencias). Los ensayos en vuelo de flameo suponen un gran riesgo debido a la posibilidad de una perdida brusca de estabilidad aeroelástica (flameo explosivo) con la posibilidad de destrucción de la aeronave. Además existen otros fenómenos asociados que pueden aparecer como el LCO (Limit Cycle Oscillation) y la interacción con los mandos de vuelo. Debido a esto, se deben llevar a cabo análisis exhaustivos, que incluyen GVT (vibraciones en tierra), antes de comenzar los ensayos en vuelo, y estos últimos deben ser ejecutados con robustos procedimientos. El objetivo de los ensayos es delimitar la frontera de estabilidad sin llegar a ella, manteniéndose siempre dentro de la envolvente estable de vuelo. Para lograrlo se necesitan métodos de predicción, siendo el “Flutter Margin”, el más utilizado. Para saber cuánta estabilidad aeroelástica tiene el avión y lo lejos que está de la frontera de estabilidad (a través de métodos de predicción) los parámetros modales, en particular la frecuencia y el amortiguamiento, son de vital importancia. El ensayo en vuelo consiste en la excitación de la estructura a diferentes condiciones de vuelo, la medición de la respuesta y su análisis para obtener los dos parámetros mencionados. Un gran esfuerzo se dedica al análisis en tiempo real de las señales como un medio de reducir el riesgo de este tipo de ensayos. Existen numerosos métodos de Análisis Modal, pero pocos capaces de analizar las señales procedentes de los ensayos de flameo, debido a sus especiales características. Un método novedoso, basado en la Descomposición por Valores Singulares (SVD) y la factorización QR, ha sido desarrollado y aplicado al análisis de señales procedentes de vuelos de flameo del F-18. El método es capaz de identificar frecuencia y amortiguamiento de los modos críticos. El algoritmo se basa en la capacidad del SVD para el análisis, modelización y predicción de series de datos con características periódicas y en su capacidad de identificar el rango de una matriz, así como en la aptitud del QR para seleccionar la mejor base vectorial entre un conjunto de vectores para representar el campo vectorial que forman. El análisis de señales de flameo simuladas y reales demuestra, bajo ciertas condiciones, la efectividad, robustez, resistencia al ruido y capacidad de automatización del método propuesto. ABSTRACT Flutter involves the interaction between inertial, elastic and aerodynamic forces. It consists on an exchange of energy, identified by change in damping, between two or more structural modes, named critical modes, whose frequencies tend to get closer to each other (frequency coalescence). Flight flutter testing involves high risk because of the possibility of an abrupt lost in aeroelastic stability (hard flutter) that may lead to aircraft destruction. Moreover associated phenomena may happen during the flight as LCO (Limit Cycle Oscillation) and coupling with flight controls. Because of that, intensive analyses, including GVT (Ground Vibration Test), have to be performed before beginning the flights test and during them consistent procedures have to be followed. The test objective is to identify the stability border, maintaining the aircraft always inside the stable domain. To achieve that flutter speed prediction methods have to be used, the most employed being the “Flutter Margin”. In order to know how much aeroelastic stability remains and how far the aircraft is from the stability border (using the prediction methods), modal parameters, in particular frequency and damping are paramount. So flight test consists in exciting the structure at various flight conditions, measuring the response and identifying in real-time these two parameters. A great deal of effort is being devoted to real-time flight data analysis as an effective way to reduce the risk. Numerous Modal Analysis algorithms are available, but very few are suitable to analyze signals coming from flutter testing due to their special features. A new method, based on Singular Value Decomposition (SVD) and QR factorization, has been developed and applied to the analysis of F-18 flutter flight-test data. The method is capable of identifying the frequency and damping of the critical aircraft modes. The algorithm relies on the capability of SVD for the analysis, modelling and prediction of data series with periodic features and also on its power to identify matrix rank as well as QR competence for selecting the best basis among a set of vectors in order to represent a given vector space of such a set. The analysis of simulated and real flutter flight test data demonstrates, under specific conditions, the effectiveness, robustness, noise-immunity and the capability for automation of the method proposed.
Resumo:
This paper presents a robust approach for recognition of thermal face images based on decision level fusion of 34 different region classifiers. The region classifiers concentrate on local variations. They use singular value decomposition (SVD) for feature extraction. Fusion of decisions of the region classifier is done by using majority voting technique. The algorithm is tolerant against false exclusion of thermal information produced by the presence of inconsistent distribution of temperature statistics which generally make the identification process difficult. The algorithm is extensively evaluated on UGC-JU thermal face database, and Terravic facial infrared database and the recognition performance are found to be 95.83% and 100%, respectively. A comparative study has also been made with the existing works in the literature.
Resumo:
Multiuser multiple-input multiple-output (MIMO) downlink (DL) transmission schemes experience both multiuser interference as well as inter-antenna interference. The singular value decomposition provides an appropriate mean to process channel information and allows us to take the individual user’s channel characteristics into account rather than treating all users channels jointly as in zero-forcing (ZF) multiuser transmission techniques. However, uncorrelated MIMO channels has attracted a lot of attention and reached a state of maturity. By contrast, the performance analysis in the presence of antenna fading correlation, which decreases the channel capacity, requires substantial further research. The joint optimization of the number of activated MIMO layers and the number of bits per symbol along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers has to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
We propose a new methodology to evaluate the balance between segregation and integration in functional brain networks by using singular value decomposition techniques. By means of magnetoencephalography, we obtain the brain activity of a control group of 19 individuals during a memory task. Next, we project the node-to-node correlations into a complex network that is analyzed from the perspective of its modular structure encoded in the contribution matrix. In this way, we are able to study the role that nodes play I/O its community and to identify connector and local hubs. At the mesoscale level, the analysis of the contribution matrix allows us to measure the degree of overlapping between communities and quantify how far the functional networks are from the configuration that better balances the integrated and segregated activity
Resumo:
Realistic operation of helicopter flight simulators in complex topographies (such as urban environments) requires appropriate prediction of the incoming wind, and this prediction should be made in real time. Unfortunately, the wind topology around complex topographies shows time-dependent, fully nonlinear, turbulent patterns (i.e., wakes) whose simulation cannot be made using computationally inexpensive tools based on corrected potential approximations. Instead, the full Navier-Stokes plus some kind of turbulent modeling is necessary, which is quite computationally expensive. The complete unsteady flow depends on two parameters, namely the velocity and orientation of the free stream flow. The aim of this MSc thesis is to develop a methodology for the real time simulation of these complex flows. For simplicity, the flow around a single building (20 mx20 m cross section and 100 m height) is considered, with free stream velocity in the range 5-25 m/s. Because of the square cross section, the problem shows two reflection symmetries, which allows for restricting the orientations to the range 0° < a. < 45°. The methodology includes an offline preprocess and the online operation. The preprocess consists in three steps: An appropriate, unstructured mesh is selected in which the flow is sim¬ulated using OpenFOAM, and this is done for 33 combinations of 3 free stream intensities and 11 orientations. For each of these, the simulation proceeds for a sufficiently large time as to eliminate transients. This step is quite computationally expensive. Each flow field is post-processed using a combination of proper orthogonal decomposition, fast Fourier transform, and a convenient optimization tool, which identifies the relevant frequencies (namely, both the basic frequencies and their harmonics) and modes in the computational mesh. This combination includes several new ingredients to filter errors out and identify the relevant spatio-temporal patterns. Note that, in principle, the basic frequencies depend on both the intensity and the orientation of the free stream flow. The outcome of this step is a set of modes (vectors containing the three velocity components at all mesh points) for the various Fourier components, intensities, and orientations, which can be organized as a third order tensor. This step is fairly computationally inexpensive. The above mentioned tensor is treated using a combination of truncated high order singular value, decomposition and appropriate one-dimensional interpolation (as in Lorente, Velazquez, Vega, J. Aircraft, 45 (2008) 1779-1788). The outcome is a tensor representation of both the relevant fre¬quencies and the associated Fourier modes for a given pair of values of the free stream flow intensity and orientation. This step is fairly compu¬tationally inexpensive. The online, operation requires just reconstructing the time-dependent flow field from its Fourier representation, which is extremely computationally inex¬pensive. The whole method is quite robust.
Resumo:
The numerical strategies employed in the evaluation of singular integrals existing in the Cauchy principal value (CPV) sense are, undoubtedly, one of the key aspects which remarkably affect the performance and accuracy of the boundary element method (BEM). Thus, a new procedure, based upon a bi-cubic co-ordinate transformation and oriented towards the numerical evaluation of both the CPV integrals and some others which contain different types of singularity is developed. Both the ideas and some details involved in the proposed formulae are presented, obtaining rather simple and-attractive expressions for the numerical quadrature which are also easily embodied into existing BEM codes. Some illustrative examples which assess the stability and accuracy of the new formulae are included.