7 resultados para silicon oxide
em Universidad Politécnica de Madrid
Resumo:
The usage of more inexpensive silicon feedstock for crystallizing mc-Si blocks promises cost reduction for the photovoltaic market. For example, less expensive substrates of upgraded metallurgical silicon (UMG-Si) are used as a mechanical support for the epitaxial solar cell. This feedstock has higher content of impurities which influences cell performance and mechanical strength of the wafers. Thus, it is of importance to know these effects in order to know which impurities should be preferentially removed or prevented during the crystallization process. Metals like aluminum (Al) can decrease the mechanical strength due to micro-cracking of the silicon matrix and introduction of high values of thermal residual stress. Additionally, silicon oxide (SiOx) lowers the mechanical strength of mc-Si due to thermal residual stresses and stress intensification when an external load is applied in the surrounding of the particle. Silicon carbide (SiC) introduces thermal residual stresses and intensifies slightly the stress in the surrounding of the particle but can have a toughening effect on the silicon matrix. Finally, silicon nitride (Si3N4) does not influence significantly the mechanical strength of mc- Si and can have a toughening effect on the silicon matrix.
Resumo:
The purpose of this research is to characterise the mechanical properties of multicrystalline silicon for photovoltaic applications that was crystallised from silicon feedstock with a high content of several types of impurities. The mechanical strength, fracture toughness and elastic modulus were measured at different positions within a multicrystalline silicon block to quantify the effect of impurity segregation on these mechanical properties. The microstructure and fracture surfaces of the samples was exhaustively analysed with a scanning electron microscope in order to correlate the values of mechanical properties with material microstructure. Fracture stresses values were treated statistically via the Weibull statistics. The results of this research show that metals segregate to the top of the block, produce moderate microcracking and introduce high thermal stresses. Silicon oxide is produced at the bottom part of the silicon block, and its presence significantly reduces the mechanical strength and fracture toughness of multicrystalline silicon due to both thermal and elastic mismatch between silicon and the silicon oxide inclusions. Silicon carbide inclusions from the upper parts of the block increase the fracture toughness and elastic modulus of multicrystalline silicon. Additionally, the mechanical strength of multicrystalline silicon can increase when the radius of the silicon carbide inclusions is smaller than ~10 µm. The most damaging type of impurity inclusion for the multicrystalline silicon block studied in this work was amorphous silicon oxide. The oriented precipitation of silicon oxide at grain and twin boundaries eases the formation of radial cracks between inclusions and decreases significatively the mechanical strength of multicrystalline silicon. The second most influencing type of impurity inclusions were metals like aluminium and copper, that cause spontaneous microcracking in their surroundings after the crystallisation process, therefore reducing the mechanical response of multicrystalline silicon. Therefore, solar cell producers should pay attention to the content of metals and oxygen within the silicon feedstock in order to produce solar cells with reliable mechanical properties.
Resumo:
In this work we study the optimization of laser-fired contact (LFC) processing parameters, namely laser power and number of pulses, based on the electrical resistance measurement of an aluminum single LFC point. LFC process has been made through four passivation layers that are typically used in c-Si and mc-Si solar cell fabrication: thermally grown silicon oxide (SiO2), deposited phosphorus-doped amorphous silicon carbide (a-SiCx/H(n)), aluminum oxide (Al2O3) and silicon nitride (SiNx/H) films. Values for the LFC resistance normalized by the laser spot area in the range of 0.65–3 mΩ cm2 have been obtained
Resumo:
This PhD work is focused on liquid crystal based tunable phase devices with special emphasis on their design and manufacturing. In the course of the work a number of new manufacturing technologies have been implemented in the UPM clean room facilities, leading to an important improvement in the range of devices being manufactured in the laboratory. Furthermore, a number of novel phase devices have been developed, all of them including novel electrodes, and/or alignment layers. The most important manufacturing progress has been the introduction of reactive ion etching as a tool for achieving high resolution photolithography on indium-tin-oxide (ITO) coated glass and quartz substrates. Another important manufacturing result is the successful elaboration of a binding protocol of anisotropic conduction adhesives. These have been employed in high density interconnections between ITO-glass and flexible printed circuits. Regarding material characterization, the comparative study of nonstoichiometric silicon oxide (SiOx) and silica (SiO2) inorganic alignment layers, as well as the relationship between surface layer deposition, layer morphology and liquid crystal electrooptical response must be highlighted, together with the characterization of the degradation of liquid crystal devices in simulated space mission environment. A wide variety of phase devices have been developed, with special emphasis on beam steerers. One of these was developed within the framework of an ESA project, and consisted of a high density reconfigurable 1D blaze grating, with a spatial separation of the controlling microelectronics and the active, radiation exposed, area. The developed devices confirmed the assumption that liquid crystal devices with such a separation of components, are radiation hard, and can be designed to be both vibration and temperature sturdy. In parallel to the above, an evenly variable analog beam steering device was designed, manufactured and characterized, providing a narrow cone diffraction free beam steering. This steering device is characterized by a very limited number of electrodes necessary for the redirection of a light beam. As few as 4 different voltage levels were needed in order to redirect a light beam. Finally at the Wojskowa Akademia Techniczna (Military University of Technology) in Warsaw, Poland, a wedged analog tunable beam steering device was designed, manufactured and characterized. This beam steerer, like the former one, was designed to resist the harsh conditions both in space and in the context of the shuttle launch. Apart from the beam steering devices, reconfigurable vortices and modal lens devices have been manufactured and characterized. In summary, during this work a large number of liquid crystal devices and liquid crystal device manufacturing technologies have been developed. Besides their relevance in scientific publications and technical achievements, most of these new devices have demonstrated their usefulness in the actual work of the research group where this PhD has been completed. El presente trabajo de Tesis se ha centrado en el diseño, fabricación y caracterización de nuevos dispositivos de fase basados en cristal líquido. Actualmente se están desarrollando dispositivos basados en cristal líquido para aplicaciones diferentes a su uso habitual como displays. Poseen la ventaja de que los dispositivos pueden ser controlados por bajas tensiones y no necesitan elementos mecánicos para su funcionamiento. La fabricación de todos los dispositivos del presente trabajo se ha realizado en la cámara limpia del grupo. La cámara limpia ha sido diseñada por el grupo de investigación, es de dimensiones reducidas pero muy versátil. Está dividida en distintas áreas de trabajo dependiendo del tipo de proceso que se lleva a cabo. La cámara limpia está completamente cubierta de un material libre de polvo. Todas las entradas de suministro de gas y agua están selladas. El aire filtrado es constantemente bombeado dentro de la zona limpia, a fin de crear una sobrepresión evitando así la entrada de aire sin filtrar. Las personas que trabajan en esta zona siempre deben de estar protegidas con un traje especial. Se utilizan trajes especiales que constan de: mono, máscara, guantes de látex, gorro, patucos y gafas de protección UV, cuando sea necesario. Para introducir material dentro de la cámara limpia se debe limpiar con alcohol y paños especiales y posteriormente secarlos con nitrógeno a presión. La fabricación debe seguir estrictamente unos pasos determinados, que pueden cambiar dependiendo de los requerimientos de cada dispositivo. Por ello, la fabricación de dispositivos requiere la formulación de varios protocolos de fabricación. Estos protocolos deben ser estrictamente respetados a fin de obtener repetitividad en los experimentos, lo que lleva siempre asociado un proceso de fabricación fiable. Una célula de cristal líquido está compuesta (de forma general) por dos vidrios ensamblados (sándwich) y colocados a una distancia determinada. Los vidrios se han sometido a una serie de procesos para acondicionar las superficies internas. La célula se llena con cristal líquido. De forma resumida, el proceso de fabricación general es el siguiente: inicialmente, se cortan los vidrios (cuya cara interna es conductora) y se limpian. Después se imprimen las pistas sobre el vidrio formando los píxeles. Estas pistas conductoras provienen del vidrio con la capa conductora de ITO (óxido de indio y estaño). Esto se hace a través de un proceso de fotolitografía con una resina fotosensible, y un desarrollo y ataque posterior del ITO sin protección. Más tarde, las caras internas de los vidrios se acondicionan depositando una capa, que puede ser orgánica o inorgánica (un polímero o un óxido). Esta etapa es crucial para el funcionamiento del dispositivo: induce la orientación de las moléculas de cristal líquido. Una vez que las superficies están acondicionadas, se depositan espaciadores en las mismas: son pequeñas esferas o cilindros de tamaño calibrado (pocos micrómetros) para garantizar un espesor homogéneo del dispositivo. Después en uno de los sustratos se deposita un adhesivo (gasket). A continuación, los sustratos se ensamblan teniendo en cuenta que el gasket debe dejar una boca libre para que el cristal líquido se introduzca posteriormente dentro de la célula. El llenado de la célula se realiza en una cámara de vacío y después la boca se sella. Por último, la conexión de los cables a la célula y el montaje de los polarizadores se realizan fuera de la sala limpia (Figura 1). Dependiendo de la aplicación, el cristal líquido empleado y los demás componentes de la célula tendrán unas características particulares. Para el diseño de los dispositivos de este trabajo se ha realizado un estudio de superficies inorgánicas de alineamiento del cristal líquido, que será de gran importancia para la preparación de los dispositivos de fase, dependiendo de las condiciones ambientales en las que vayan a trabajar. Los materiales inorgánicos que se han estudiado han sido en este caso SiOx y SiO2. El estudio ha comprendido tanto los factores de preparación influyentes en el alineamiento, el comportamiento del cristal líquido al variar estos factores y un estudio de la morfología de las superficies obtenidas.
Resumo:
The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.
Resumo:
Silicon micromachined waveguide components operating in the WM-250 (WR-1) waveguide band (0.75 to 1.1 THz) are measured. Through lines are used to characterize the waveguide loss with and without an oxide etch to reduce the surface roughness. A sidewall roughness of 100nm is achieved, enabling a waveguide loss of 0.2dB/mm. A 1THz band-pass filter is also measured to characterize the precision of fabrication process. A 1.8% shift in frequency is observed and can be accounted for by the 0.5deg etch angle and 2um expansion of the features by the oxide etch. The measured filter has a 13% 3dB bandwidth and 2.5dB insertion loss through the passband.
Resumo:
Light confinement strategies play a crucial role in the performance of thin-film (TF) silicon solar cells. One way to reduce the optical losses is the texturing of the transparent conductive oxide (TCO) that acts as the front contact. Other losses arise from the mismatch between the incident light spectrum and the spectral properties of the absorbent material that imply that low energy photons (below the bandgap value) are not absorbed, and therefore can not generate photocurrent. Up-conversion techniques, in which two sub-bandgap photons are combined to give one photon with a better matching with the bandgap, were proposed to overcome this problem. In particular, this work studies two strategies to improve light management in thin film silicon solar cells using laser technology. The first one addresses the problem of TCO surface texturing using fully commercial fast and ultrafast solid state laser sources. Aluminum doped Zinc Oxide (AZO) samples were laser processed and the results were optically evaluated by measuring the haze factor of the treated samples. As a second strategy, laser annealing experiments of TCOs doped with rare earth ions are presented as a potential process to produce layers with up-conversion properties, opening the possibility of its potential use in high efficiency solar cells.