31 resultados para semi-classical analysis
em Universidad Politécnica de Madrid
Resumo:
Resumen El diseño clásico de circuitos de microondas se basa fundamentalmente en el uso de los parámetros s, debido a su capacidad para caracterizar de forma exitosa el comportamiento de cualquier circuito lineal. La relación existente entre los parámetros s con los sistemas de medida actuales y con las herramientas de simulación lineal han facilitado su éxito y su uso extensivo tanto en el diseño como en la caracterización de circuitos y subsistemas de microondas. Sin embargo, a pesar de la gran aceptación de los parámetros s en la comunidad de microondas, el principal inconveniente de esta formulación reside en su limitación para predecir el comportamiento de sistemas no lineales reales. En la actualidad, uno de los principales retos de los diseñadores de microondas es el desarrollo de un contexto análogo que permita integrar tanto el modelado no lineal, como los sistemas de medidas de gran señal y los entornos de simulación no lineal, con el objetivo de extender las capacidades de los parámetros s a regímenes de operación en gran señal y por tanto, obtener una infraestructura que permita tanto la caracterización como el diseño de circuitos no lineales de forma fiable y eficiente. De acuerdo a esta filosofía, en los últimos años se han desarrollado diferentes propuestas como los parámetros X, de Agilent Technologies, o el modelo de Cardiff que tratan de proporcionar esta plataforma común en el ámbito de gran señal. Dentro de este contexto, uno de los objetivos de la presente Tesis es el análisis de la viabilidad del uso de los parámetros X en el diseño y simulación de osciladores para transceptores de microondas. Otro aspecto relevante en el análisis y diseño de circuitos lineales de microondas es la disposición de métodos analíticos sencillos, basados en los parámetros s del transistor, que permitan la obtención directa y rápida de las impedancias de carga y fuente necesarias para cumplir las especificaciones de diseño requeridas en cuanto a ganancia, potencia de salida, eficiencia o adaptación de entrada y salida, así como la determinación analítica de parámetros de diseño clave como el factor de estabilidad o los contornos de ganancia de potencia. Por lo tanto, el desarrollo de una formulación de diseño analítico, basada en los parámetros X y similar a la existente en pequeña señal, permitiría su uso en aplicaciones no lineales y supone un nuevo reto que se va a afrontar en este trabajo. Por tanto, el principal objetivo de la presente Tesis consistiría en la elaboración de una metodología analítica basada en el uso de los parámetros X para el diseño de circuitos no lineales que jugaría un papel similar al que juegan los parámetros s en el diseño de circuitos lineales de microondas. Dichos métodos de diseño analíticos permitirían una mejora significativa en los actuales procedimientos de diseño disponibles en gran señal, así como una reducción considerable en el tiempo de diseño, lo que permitiría la obtención de técnicas mucho más eficientes. Abstract In linear world, classical microwave circuit design relies on the s-parameters due to its capability to successfully characterize the behavior of any linear circuit. Thus the direct use of s-parameters in measurement systems and in linear simulation analysis tools, has facilitated its extensive use and success in the design and characterization of microwave circuits and subsystems. Nevertheless, despite the great success of s-parameters in the microwave community, the main drawback of this formulation is its limitation in the behavior prediction of real non-linear systems. Nowadays, the challenge of microwave designers is the development of an analogue framework that allows to integrate non-linear modeling, large-signal measurement hardware and non-linear simulation environment in order to extend s-parameters capabilities to non-linear regimen and thus, provide the infrastructure for non-linear design and test in a reliable and efficient way. Recently, different attempts with the aim to provide this common platform have been introduced, as the Cardiff approach and the Agilent X-parameters. Hence, this Thesis aims to demonstrate the X-parameter capability to provide this non-linear design and test framework in CAD-based oscillator context. Furthermore, the classical analysis and design of linear microwave transistorbased circuits is based on the development of simple analytical approaches, involving the transistor s-parameters, that are able to quickly provide an analytical solution for the input/output transistor loading conditions as well as analytically determine fundamental parameters as the stability factor, the power gain contours or the input/ output match. Hence, the development of similar analytical design tools that are able to extend s-parameters capabilities in small-signal design to non-linear ap- v plications means a new challenge that is going to be faced in the present work. Therefore, the development of an analytical design framework, based on loadindependent X-parameters, constitutes the core of this Thesis. These analytical nonlinear design approaches would enable to significantly improve current large-signal design processes as well as dramatically decrease the required design time and thus, obtain more efficient approaches.
Resumo:
The application of thematic maps obtained through the classification of remote images needs the obtained products with an optimal accuracy. The registered images from the airplanes display a very satisfactory spatial resolution, but the classical methods of thematic classification not always give better results than when the registered data from satellite are used. In order to improve these results of classification, in this work, the LIDAR sensor data from first return (Light Detection And Ranging) registered simultaneously with the spectral sensor data from airborne are jointly used. The final results of the thematic classification of the scene object of study have been obtained, quantified and discussed with and without LIDAR data, after applying different methods: Maximum Likehood Classification, Support Vector Machine with four different functions kernel and Isodata clustering algorithm (ML, SVM-L, SVM-P, SVM-RBF, SVM-S, Isodata). The best results are obtained for SVM with Sigmoide kernel. These allow the correlation with others different physical parameters with great interest like Manning hydraulic coefficient, for their incorporation in a GIS and their application in hydraulic modeling.
Resumo:
Water is a vital resource, but also a critical limiting factor for economic and social development in many parts of the world. The recent rapid growth in human population and water use for social and economic development is increasing the pressure on water resources and the environment, as well as leading to growing conflicts among competing water use sectors (agriculture, urban, tourism, industry) and regions (Gleick et al., 2009; World Bank, 2006). In Spain, as in many other arid and semi-arid regions affected by drought and wide climate variability, irrigated agriculture is responsible for most consumptive water use and plays an important role in sustaining rural livelihoods (Varela-Ortega, 2007). Historically, the evolution of irrigation has been based on publicly-funded irrigation development plans that promoted economic growth and improved the socio-economic conditions of rural farmers in agrarian Spain, but increased environmental damage and led to excessive and inefficient exploitation of water resources (Garrido and Llamas, 2010; Varela-Ortega et al., 2010). Currently, water policies in Spain focus on rehabilitating and improving the efficiency of irrigation systems, and are moving from technocratic towards integrated water management strategies driven by the European Union (EU) Water Framework Directive (WFD).
Resumo:
The theoretical formulation of the smoothed particle hydrodynamics (SPH) method deserves great care because of some inconsistencies occurring when considering free-surface inviscid flows. Actually, in SPH formulations one usually assumes that (i) surface integral terms on the boundary of the interpolation kernel support are neglected, (ii) free-surface conditions are implicitly verified. These assumptions are studied in detail in the present work for free-surface Newtonian viscous flow. The consistency of classical viscous weakly compressible SPH formulations is investigated. In particular, the principle of virtual work is used to study the verification of the free-surface boundary conditions in a weak sense. The latter can be related to the global energy dissipation induced by the viscous term formulations and their consistency. Numerical verification of this theoretical analysis is provided on three free-surface test cases including a standing wave, with the three viscous term formulations investigated.
Resumo:
A walking machine is a wheeled rover alternative, well suited for work in an unstructured environment and specially in abrupt terrain. They have some drawback like speed and power consumption, but they can achieve complex movements and protrude very little the environment they are working on. The locomotion system is determined by the terrain conditions and, in our case, this legged design has been chosen based in a working area like Rio Tinto in the South of Spain, which is a river area with abrupt terrain. A walking robot with so many degrees of freedom can be a challenge when dealing with the analysis and simulations of the legs. This paper shows how to deal with the kinematical analysis of the equations of a hexapod robot based on a design developed by the Center of Astrobiology INTA-CSIC following the classical formulation of equations
Resumo:
Abstract. We study the problem of efficient, scalable set-sharing analysis of logic programs. We use the idea of representing sharing information as a pair of abstract substitutions, one of which is a worst-case sharing representation called a clique set, which was previously proposed for the case of inferring pair-sharing. We use the clique-set representation for (1) inferring actual set-sharing information, and (2) analysis within a top-down framework. In particular, we define the new abstract functions required by standard top-down analyses, both for sharing alone and also for the case of including freeness in addition to sharing. We use cliques both as an alternative representation and as widening, defining several widening operators. Our experimental evaluation supports the conclusión that, for inferring set-sharing, as it was the case for inferring pair-sharing, precisión losses are limited, while useful efficieney gains are obtained. We also derive useful conclusions regarding the interactions between thresholds, precisión, efficieney and cost of widening. At the limit, the clique-set representation allowed analyzing some programs that exceeded memory capacity using classical sharing representations.
Resumo:
We study the problem of efñcient, scalable set-sharing analysis of logic programs. We use the idea of representing sharing information as a pair of abstract substitutions, one of which is a worst-case sharing representation called a clique set, which was previously proposed for the case of inferring pair-sharing. We use the clique-set representation for (1) inferring actual set-sharing information, and (2) analysis within a topdown framework. In particular, we define the abstract functions required by standard top-down analyses, both for sharing alone and also for the case of including freeness in addition to sharing. Our experimental evaluation supports the conclusión that, for inferring set-sharing, as it was the case for inferring pair-sharing, precisión losses are limited, while useful efñciency gains are obtained. At the limit, the clique-set representation allowed analyzing some programs that exceeded memory capacity using classical sharing representations.
Resumo:
We propose to directly process 3D + t image sequences with mathematical morphology operators, using a new classi?cation of the 3D+t structuring elements. Several methods (?ltering, tracking, segmentation) dedicated to the analysis of 3D + t datasets of zebra?sh embryogenesis are introduced and validated through a synthetic dataset. Then, we illustrate the application of these methods to the analysis of datasets of zebra?sh early development acquired with various microscopy techniques. This processing paradigm produces spatio-temporal coherent results as it bene?ts from the intrinsic redundancy of the temporal dimension, and minimizes the needs for human intervention in semi-automatic algorithms.
Resumo:
The purpose of this study is to determine the stress distribution in the carpentry joint of halved and tabled scarf joint with the finite element method (FEM) and its comparison with the values obtained using the theory of Strength of Materials. The stress concentration areas where analyzed and the influence of mesh refinement was studied on the results in order to determine the mesh size that provides the stress values more consistent with the theory. In areas where stress concentration is lower, different mesh sizes show similar stress values. In areas where stress concentration occurs, the same values increase considerably with the refinement of the mesh. The results show a central symmetry of the isobar lines distribution where the centre of symmetry corresponds to the geometric centre of the joint. Comparison of normal stress levels obtained by the FEM and the classical theory shows small differences, except at points of stress concentration.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
The use of probabilistic methods to analyse reliability of structures is being applied to a variety of engineering problems due to the possibility of establishing the failure probability on rational grounds. In this paper we present the application of classical reliability theory to analyse the safety of underground tunnels.
Analysis of a rate-adaptive reconciliation protocol and the effect of leakage on the secret key rate
Resumo:
Quantum key distribution performs the trick of growing a secret key in two distant places connected by a quantum channel. The main reason is so that the legitimate users can bound the information gathered by the eavesdropper. In practical systems, whether because of finite resources or external conditions, the quantum channel is subject to fluctuations. A rate-adaptive information reconciliation protocol, which adapts to the changes in the communication channel, is then required to minimize the leakage of information in the classical postprocessing. We consider here the leakage of a rate-adaptive information reconciliation protocol. The length of the exchanged messages is larger than that of an optimal protocol; however, we prove that the min-entropy reduction is limited. The simulation results, both in the asymptotic and in the finite-length regime, show that this protocol allows to increase the amount of a distillable secret key.
Resumo:
Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/ webcite.
Resumo:
We present a quasi-monotone semi-Lagrangian particle level set (QMSL-PLS) method for moving interfaces. The QMSL method is a blend of first order monotone and second order semi-Lagrangian methods. The QMSL-PLS method is easy to implement, efficient, and well adapted for unstructured, either simplicial or hexahedral, meshes. We prove that it is unconditionally stable in the maximum discrete norm, � · �h,∞, and the error analysis shows that when the level set solution u(t) is in the Sobolev space Wr+1,∞(D), r ≥ 0, the convergence in the maximum norm is of the form (KT/Δt)min(1,Δt � v �h,∞ /h)((1 − α)hp + hq), p = min(2, r + 1), and q = min(3, r + 1),where v is a velocity. This means that at high CFL numbers, that is, when Δt > h, the error is O( (1−α)hp+hq) Δt ), whereas at CFL numbers less than 1, the error is O((1 − α)hp−1 + hq−1)). We have tested our method with satisfactory results in benchmark problems such as the Zalesak’s slotted disk, the single vortex flow, and the rising bubble.
Resumo:
This paper presents the analysis of the reflections in two kind of spherical far field ranges: one if the classical acquisition where the AUT is rotated and the second one corresponds to the systems where the AUT is fixed and the antenna probe is rotated. In large far field systems this is not possible, but this can be used to the measurement of small antennas, for instance, with the SATIMO StarGate system. In both cases, it is assumed that only one frequency is acquired and the results should be improved cut by cut, in order not to lose the advantages or far field measurements. Finally, some practical results are studied using measurements of one antenna in the outdoor far field facility of LIT INPE in Brazil.