5 resultados para self-maps

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving map

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been demonstrated that rating trust and reputation of individual nodes is an effective approach in distributed environments in order to improve security, support decision-making and promote node collaboration. Nevertheless, these systems are vulnerable to deliberate false or unfair testimonies. In one scenario, the attackers collude to give negative feedback on the victim in order to lower or destroy its reputation. This attack is known as bad mouthing attack. In another scenario, a number of entities agree to give positive feedback on an entity (often with adversarial intentions). This attack is known as ballot stuffing. Both attack types can significantly deteriorate the performances of the network. The existing solutions for coping with these attacks are mainly concentrated on prevention techniques. In this work, we propose a solution that detects and isolates the abovementioned attackers, impeding them in this way to further spread their malicious activity. The approach is based on detecting outliers using clustering, in this case self-organizing maps. An important advantage of this approach is that we have no restrictions on training data, and thus there is no need for any data pre-processing. Testing results demonstrate the capability of the approach in detecting both bad mouthing and ballot stuffing attack in various scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adaptation to the European Higher Education Area (EHEA) is becoming a great challenge for the University Community, especially for its teaching and research staff, which is involved actively in the teaching-learning process. It is also inducing a paradigm change for lecturers and students. Among the methodologies used for processes of teaching innovation, system thinking plays an important role when working mainly with mind maps, and is focused to highlighting the essence of the knowledge, allowing its visual representation. In this paper, a method for using these mind maps for organizing a particular subject is explained. This organization is completed with the definition of duration, precedence relationships and resources for each of these activities, as well as with their corresponding monitoring. Mind maps are generated by means of the MINDMANAGER package whilst Ms-PROJECT is used for establishing tasks relationships, durations, resources, and monitoring. Summarizing, a procedure and the necessary set of applications for self organizing and managing (timed) scheduled teaching tasks has been described in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noise maps are usually represented as contour or isolines maps describing the sound levels in a region. Using this kind of representation the user can easily find the noise level assigned to every location in the map. But the acoustic calculations behind the map are not performed for every single location on it; they are only performed in a grid of receivers. The results in this calculation grid are interpolated to draw the isolines or contours. Therefore, the resolution of the calculation grid and the way it was created (rectangular, triangulated, random…) have an effect on the resulting map. In this paper we describe a smart iterative procedure to optimize the quality of the map at a really low additional computational cost, using self-adaptive grids for the acoustic calculations. These self-adaptive grids add new receivers to the sampling grid in those locations where they are expected to be more useful, so that the performance at the output of the interpolator is enhanced. Self-adaptive sampling grids can be used for minimizing the overall error of the map (improving its quality), or for reducing calculation times, and can be also applied selectively to target areas or contour lines. This can be done by the user customizing the maximum number of iterations, the number of new receivers for each iteration, the target isolines, the target quality…

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adaptation to the European Higher Education Area (EHEA) is becoming a great challenge for the University Community, especially for its teaching and research staff, which is involved actively in the teaching-learning process. It is also inducing a paradigm change for lecturers and students. Among the methodologies used for processes of teaching innovation, system thinking plays an important role when working mainly with mind maps, and is focused to highlighting the essence of the knowledge, allowing its visual representation. In this paper, a method for using these mind maps for organizing a particular subject is explained. This organization is completed with the definition of duration, precedence relationships and resources for each of these activities, as well as with their corresponding monitoring. Mind maps are generated by means of the MINDMANAGER package whilst Ms-PROJECT is used for establishing tasks relationships, durations, resources, and monitoring. Summarizing, a procedure and the necessary set of applications for self organizing and managing (timed) scheduled teaching tasks has been described in this paper