47 resultados para seguimiento de objetos
em Universidad Politécnica de Madrid
Resumo:
Las técnicas de rehabilitación permiten la recuperación y mejora de las funciones dañadas o deterioradas y ayuda al paciente con DCA a adaptarse a su nueva situación. El avance tecnológico que se ha producido en las últimas décadas, ha impulsado la investigación en el diseño y desarrollo de nuevos modelos de rehabilitación. La tecnología de vídeo interactivo se convierte en un elemento de apoyo en estos nuevos modelos rehabilitadores. Se hace necesario desarrollar nuevos algoritmos de segmentación y seguimiento que permitan dotar de información adicional a los vídeos. En este trabajo se han implementado y evaluado dos métodos que permiten realizar la detección y el seguimiento de objetos de interés.
Resumo:
El objetivo principal de esta Tesis es extender la utilización del “Soft- Computing” para el control de vehículos sin piloto utilizando visión. Este trabajo va más allá de los típicos sistemas de control utilizados en entornos altamente controlados, demonstrando la fuerza y versatilidad de la lógica difusa (Fuzzy Logic) para controlar vehículos aéreos y terrestres en un abanico de applicaciones diferentes. Para esta Tesis se ha realizado un gran número de pruebas reales en las cuales los controladores difusos han manejado una plataforma visual “pan-and-tilt”, un helicoptero, un coche comercial y hasta dos tipos de quadrirotores. El uso del método de optimización “Cross-Entropy” ha sido utilizado para mejorar el comportamiento de algunos de los controladores borrosos. Todos los controladores difusos presentados en ésta Tesis han sido implementados utilizando un código desarrollado por el candidato para tal efecto, llamado MOFS (Miguel Olivares’ Fuzzy Software). Diferentes algoritmos visuales han sido utilizados para adquirir la informaci´on visual del entorno, “Cmashift”, descomposición de la homografía y detección de marcas de realidad aumentada, entre otros. Dicha información visual ha sido utilizada como entrada de los controladores difusos para comandar los vehículos en las diferentes applicaciones autonomas. El volante de un vehículo comercial ha sido controlado para realizar pruebas de conducción autónoma en condiciones de tráfico similares a las de una ciudad. El sistema ha llegado a completar con éxito pruebas de más de 6 km sin ninguna interacción humana, mediante el seguimiento de una línea pintada en el suelo. El limitado campo visual del sistema no ha sido impedimento para alcanzar velocidades de hasta 48 km/h y ser guiado autonomamente en curvas de radio reducido. Objetos estáticos y móviles han sido seguidos desde un helicoptero no tripulado, mediante el control de una plataforma visual “pan-and-tilt”. ´Éste mismo helicoptero ha sido controlado completamente para su aterrizaje autonomo, mediante el control del movimiento lateral (roll), horizontal (pitch) y de altitud. El seguimiento de objetos volantes ha sido resulto mediante el control horizontal (pitch) y de orientación (heading) de un quadrirotor. Para tareas de evitación de obstáculos se ha implementado un controlador difuso para el manejo de la orientación (heading) de un quadrirotor. En el campo de la optimización de controladores se ha aportado al estado del arte una extensión del uso del método “Cross-Entropy”. Está Tesis presenta una novedosa implementación de dicho método para la optimización de las ganancias, la posición y medida de los conjuntos de las funciones de pertenecia y el peso de las reglas para mejorar el comportamiento de un controlador difuso. Dichos procesos de optimización se han realizado utilizando “ROS” y “Matlab Simulink” para obtener mejores resultados para la evitación de colisiones con vehículos aéreos no tripulados. Ésta Tesis demuestra que los controladores implementados con lógica difusa son altamente capaces de controlador sistemas sin tener en cuenta el modelo del vehículo a controlador en entornos altamente perturbables con un sensor de bajo coste como es una cámara. El ruido presentes causado por los cambios de iluminación en la adquisición de imágenes y la alta incertidumbre en la detección visual han sido manejados satisfactoriamente por ésta técnica de de “Soft-Computing” para distintas aplicaciones tanto con vehículos aéreos como terrestres.
Resumo:
El principal objetivo de esta tesis es dotar a los vehículos aéreos no tripulados (UAVs, por sus siglas en inglés) de una fuente de información adicional basada en visión. Esta fuente de información proviene de cámaras ubicadas a bordo de los vehículos o en el suelo. Con ella se busca que los UAVs realicen tareas de aterrizaje o inspección guiados por visión, especialmente en aquellas situaciones en las que no haya disponibilidad de estimar la posición del vehículo con base en GPS, cuando las estimaciones de GPS no tengan la suficiente precisión requerida por las tareas a realizar, o cuando restricciones de carga de pago impidan añadir sensores a bordo de los vehículos. Esta tesis trata con tres de las principales áreas de la visión por computador: seguimiento visual y estimación visual de la pose (posición y orientación), que a su vez constituyen la base de la tercera, denominada control servo visual, que en nuestra aplicación se enfoca en el empleo de información visual para controlar los UAVs. Al respecto, esta tesis se ocupa de presentar propuestas novedosas que permitan solucionar problemas relativos al seguimiento de objetos mediante cámaras ubicadas a bordo de los UAVs, se ocupa de la estimación de la pose de los UAVs basada en información visual obtenida por cámaras ubicadas en el suelo o a bordo, y también se ocupa de la aplicación de las técnicas propuestas para solucionar diferentes problemas, como aquellos concernientes al seguimiento visual para tareas de reabastecimiento autónomo en vuelo o al aterrizaje basado en visión, entre otros. Las diversas técnicas de visión por computador presentadas en esta tesis se proponen con el fin de solucionar dificultades que suelen presentarse cuando se realizan tareas basadas en visión con UAVs, como las relativas a la obtención, en tiempo real, de estimaciones robustas, o como problemas generados por vibraciones. Los algoritmos propuestos en esta tesis han sido probados con información de imágenes reales obtenidas realizando pruebas on-line y off-line. Diversos mecanismos de evaluación han sido empleados con el propósito de analizar el desempeño de los algoritmos propuestos, entre los que se incluyen datos simulados, imágenes de vuelos reales, estimaciones precisas de posición empleando el sistema VICON y comparaciones con algoritmos del estado del arte. Los resultados obtenidos indican que los algoritmos de visión por computador propuestos tienen un desempeño que es comparable e incluso mejor al de algoritmos que se encuentran en el estado del arte. Los algoritmos propuestos permiten la obtención de estimaciones robustas en tiempo real, lo cual permite su uso en tareas de control visual. El desempeño de estos algoritmos es apropiado para las exigencias de las distintas aplicaciones examinadas: reabastecimiento autónomo en vuelo, aterrizaje y estimación del estado del UAV. Abstract The main objective of this thesis is to provide Unmanned Aerial Vehicles (UAVs) with an additional vision-based source of information extracted by cameras located either on-board or on the ground, in order to allow UAVs to develop visually guided tasks, such as landing or inspection, especially in situations where GPS information is not available, where GPS-based position estimation is not accurate enough for the task to develop, or where payload restrictions do not allow the incorporation of additional sensors on-board. This thesis covers three of the main computer vision areas: visual tracking and visual pose estimation, which are the bases the third one called visual servoing, which, in this work, focuses on using visual information to control UAVs. In this sense, the thesis focuses on presenting novel solutions for solving the tracking problem of objects when using cameras on-board UAVs, on estimating the pose of the UAVs based on the visual information collected by cameras located either on the ground or on-board, and also focuses on applying these proposed techniques for solving different problems, such as visual tracking for aerial refuelling or vision-based landing, among others. The different computer vision techniques presented in this thesis are proposed to solve some of the frequently problems found when addressing vision-based tasks in UAVs, such as obtaining robust vision-based estimations at real-time frame rates, and problems caused by vibrations, or 3D motion. All the proposed algorithms have been tested with real-image data in on-line and off-line tests. Different evaluation mechanisms have been used to analyze the performance of the proposed algorithms, such as simulated data, images from real-flight tests, publicly available datasets, manually generated ground truth data, accurate position estimations using a VICON system and a robotic cell, and comparison with state of the art algorithms. Results show that the proposed computer vision algorithms obtain performances that are comparable to, or even better than, state of the art algorithms, obtaining robust estimations at real-time frame rates. This proves that the proposed techniques are fast enough for vision-based control tasks. Therefore, the performance of the proposed vision algorithms has shown to be of a standard appropriate to the different explored applications: aerial refuelling and landing, and state estimation. It is noteworthy that they have low computational overheads for vision systems.
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.
Resumo:
En el presente trabajo se aborda el problema del seguimiento de objetos, cuyo objetivo es encontrar la trayectoria de un objeto en una secuencia de video. Para ello, se ha desarrollado un método de seguimiento-por-detección que construye un modelo de apariencia en un dominio comprimido usando una nueva e innovadora técnica: “compressive sensing”. La única información necesaria es la situación del objeto a seguir en la primera imagen de la secuencia. El seguimiento de objetos es una aplicación típica del área de visión artificial con un desarrollo de bastantes años. Aun así, sigue siendo una tarea desafiante debido a varios factores: cambios de iluminación, oclusión parcial o total de los objetos y complejidad del fondo de la escena, los cuales deben ser considerados para conseguir un seguimiento robusto. Para lidiar lo más eficazmente posible con estos factores, hemos propuesto un algoritmo de tracking que entrena un clasificador Máquina Vector Soporte (“Support Vector Machine” o SVM en sus siglas en inglés) en modo online para separar los objetos del fondo de la escena. Con este fin, hemos generado nuestro modelo de apariencia por medio de un descriptor de características muy robusto que describe los objetos y el fondo devolviendo un vector de dimensiones muy altas. Por ello, se ha implementado seguidamente un paso para reducir la dimensionalidad de dichos vectores y así poder entrenar nuestro clasificador en un dominio mucho menor, al que denominamos domino comprimido. La reducción de la dimensionalidad de los vectores de características se basa en la teoría de “compressive sensing”, que dice que una señal con poca dispersión (pocos componentes distintos de cero) puede estar bien representada, e incluso puede ser reconstruida, a partir de un conjunto muy pequeño de muestras. La teoría de “compressive sensing” se ha aplicado satisfactoriamente en este trabajo y diferentes técnicas de medida y reconstrucción han sido probadas para evaluar nuestros vectores reducidos, de tal forma que se ha verificado que son capaces de preservar la información de los vectores originales. También incluimos una actualización del modelo de apariencia del objeto a seguir, mediante el reentrenamiento de nuestro clasificador en cada cuadro de la secuencia con muestras positivas y negativas, las cuales han sido obtenidas a partir de la posición predicha por el algoritmo de seguimiento en cada instante temporal. El algoritmo propuesto ha sido evaluado en distintas secuencias y comparado con otros algoritmos del estado del arte de seguimiento, para así demostrar el éxito de nuestro método.
Resumo:
El análisis de vídeo laparoscópico ofrece nuevas posibilidades a la navegación quirúrgica al garantizar una incorporación mínima de tecnología en quirófano, evitando así alterar la ergonomía y los flujos de trabajo de las intervenciones. Una de sus principales ventajas es que puede servir como fuente de datos para reconstruir tridimensionalmente la escena laparoscópica, lo que permite dotar al cirujano de la sensación de profundidad perdida en este tipo de cirugía. En el presente trabajo de investigación se comparan dos detectores de puntos singulares, SIFT y SURF, para estimar cuál de los dos podría integrarse en un algoritmo de cálculo de coordenadas 3D, MonoSLAM, basado en la detección y el seguimiento de estos puntos singulares en los fotogramas del vídeo. Los resultados obtenidos posicionan a SURF como la mejor opción gracias a su rapidez y a su mayor capacidad de discriminación entre estructuras anatómicas e instrumental quirúrgico.
Resumo:
El proyecto consiste en el diseño y estudio de un software cuyas prestaciones estén orientadas a gestionar una simulación de un sistema de radar. El prototipo de este entorno de simulación se ha realizado en el lenguaje Matlab debido a que inicialmente se considera el más adecuado para el tratamiento de las señales que los sistemas de radar manejan para realizar sus cálculos. Se ha escogido como modelo el software desarrollado por la compañía SAP para gestionar los E.R.P.s de grandes empresas. El motivo es que es un software cuyo diseño y funcionalidad es especialmente adecuado para la gestión ordenada de una cantidad grande de datos diversos de forma integrada. Diseñar e implementar el propio entorno es una tarea de enorme complejidad y que requerirá el esfuerzo de una cantidad importante de personas; por lo que este proyecto se ha limitado, a un prototipo básico con una serie de características mínimas; así como a indicar y dejar preparado el camino por el que deberán transcurrir las futuras agregaciones de funcionalidad o mejoras. Funcionalmente, esto es, independientemente de la implementación específica con la que se construya el entorno de simulación, se ha considerado dividir las características y prestaciones ofrecidas por el sistema en bloques. Estos bloques agruparán los componentes relacionados con un aspecto específico de la simulación, por ejemplo, el bloque 1, es el asignado a todo lo relacionado con el blanco a detectar. El usuario del entorno de simulación interactuará con el sistema ejecutando lo que se llaman transacciones, que son agrupaciones lógicas de datos a introducir/consultar en el sistema relacionados y que se pueden ejecutar de forma independiente. Un ejemplo de transacción es la que permite mantener una trayectoria de un blanco junto con sus parámetros, pero también puede ser una transacción la aplicación que permite por ejemplo, gestionar los usuarios con acceso al entorno. Es decir, las transacciones son el componente mínimo a partir del cual el usuario puede interactuar con el sistema. La interfaz gráfica que se le ofrecerá al usuario, está basada en modos, que se pueden considerar “ventanas” independientes entre sí dentro de las cuáles el usuario ejecuta sus transacciones. El usuario podrá trabajar con cuantos modos en paralelo desee y cambiar según desee entre ellos. La programación del software se ha realizado utilizando la metodología de orientación a objetos y se ha intentado maximizar la reutilización del código así como la configurabilidad de su funcionalidad. Una característica importante que se ha incorporado para garantizar la integridad de los datos es un diccionario sintáctico. Para permitir la persistencia de los datos entre sesiones del usuario se ha implementado una base de datos virtual (que se prevé se reemplace por una real), que permite manejar, tablas, campos clave, etc. con el fin de guardar todos los datos del entorno, tanto los de configuración que solo serían responsabilidad de los administradores/desarrolladores como los datos maestros y transaccionales que serían gestionados por los usuarios finales del entorno de simulación. ABSTRACT. This end-of-degree project comprises the design, study and implementation of a software based application able to simulate the various aspects and performance of a radar system. A blueprint for this application has been constructed upon the Matlab programming language. This is due to the fact that initially it was thought to be the one most suitable to the complex signals radar systems usually process; but it has proven to be less than adequate for all the other core processes the simulation environment must provide users with. The software’s design has been based on another existing software which is the one developed by the SAP company for managing enterprises, a software categorized (and considered the paradigm of) as E.R.P. software (E.R.P. stands for Enterprise Resource Planning). This software has been selected as a model because is very well suited (its basic features) for working in an orderly fashion with a pretty good quantity of data of very diverse characteristics, and for doing it in a way which protects the integrity of the data. To design and construct the simulation environment with all its potential features is a pretty hard task and requires a great amount of effort and work to be dedicated to its accomplishment. Due to this, the scope of this end-of-degree project has been focused to design and construct a very basic prototype with minimal features, but which way future developments and upgrades to the systems features should go has also been pointed. In a purely functional approach, i.e. disregarding completely the specific implementation which accomplishes the simulation features, the different parts or aspects of the simulation system have been divided and classified into blocks. The blocks will gather together and comprise the various components related with a specific aspect of the simulation landscape, for example, block number one will be the one dealing with all the features related to the radars system target. The user interaction with the system will be based on the execution of so called transactions, which essentially consist on bunches of information which logically belong together and can thus be managed together. A good example, could be a transaction which permits to maintain a series of specifications for target’s paths; but it could also be something completely unrelated with the radar system itself as for example, the management of the users who can access the system. Transactions will be thus the minimum unit of interaction of users with the system. The graphic interface provided to the user will be mode based, which can be considered something akin to a set of independent windows which are able on their own to sustain the execution of an independent transaction. The user ideally should be able to work with as many modes simultaneously as he wants to, switching his focus between them at will. The approach to the software construction has been based on the object based paradigm. An effort has been made to maximize the code’s reutilization and also in maximizing its customizing, i.e., same sets of code able to perform different tasks based on configuration data. An important feature incorporated to the software has been a data dictionary (a syntactic one) which helps guarantee data integrity. Another important feature that allow to maintain data persistency between user sessions, is a virtual relational data base (which should in future times become a real data base) which allows to store data in tables. The data store in this tables comprises both the system’s configuration data (which administrators and developers will maintain) and also master and transactional data whose maintenance will be the end users task.
Resumo:
The important technological advances experienced along the last years have resulted in an important demand for new and efficient computer vision applications. On the one hand, the increasing use of video editing software has given rise to a necessity for faster and more efficient editing tools that, in a first step, perform a temporal segmentation in shots. On the other hand, the number of electronic devices with integrated cameras has grown enormously. These devices require new, fast, and efficient computer vision applications that include moving object detection strategies. In this dissertation, we propose a temporal segmentation strategy and several moving object detection strategies, which are suitable for the last generation of computer vision applications requiring both low computational cost and high quality results. First, a novel real-time high-quality shot detection strategy is proposed. While abrupt transitions are detected through a very fast pixel-based analysis, gradual transitions are obtained from an efficient edge-based analysis. Both analyses are reinforced with a motion analysis that allows to detect and discard false detections. This analysis is carried out exclusively over a reduced amount of candidate transitions, thus maintaining the computational requirements. On the other hand, a moving object detection strategy, which is based on the popular Mixture of Gaussians method, is proposed. This strategy, taking into account the recent history of each image pixel, adapts dynamically the amount of Gaussians that are required to model its variations. As a result, we improve significantly the computational efficiency with respect to other similar methods and, additionally, we reduce the influence of the used parameters in the results. Alternatively, in order to improve the quality of the results in complex scenarios containing dynamic backgrounds, we propose different non-parametric based moving object detection strategies that model both background and foreground. To obtain high quality results regardless of the characteristics of the analyzed sequence we dynamically estimate the most adequate bandwidth matrices for the kernels that are used in the background and foreground modeling. Moreover, the application of a particle filter allows to update the spatial information and provides a priori knowledge about the areas to analyze in the following images, enabling an important reduction in the computational requirements and improving the segmentation results. Additionally, we propose the use of an innovative combination of chromaticity and gradients that allows to reduce the influence of shadows and reflects in the detections.
Resumo:
. Año 2006. Proyecto Piloto de Diseño y Aplicación del Sistema de Seguimiento de la Biodiversidad Española . Año 2007. Ley 42/2007 del Patrimonio Natural y de la Biodiversidad. Titulo I, Capitulo I, Artículo 9. Objetivos y contenido del Inventario Español del Patrimonio Natural y de la Biodiversidad. Artículo 10. Sistema de Indicadores. Artículo 11. Informe sobre el estado del Patrimonio Natural y de la Biodiversidad. . Año 2008. Primera propuesta metodológica coordinada por Felipe Domínguez. . Año 2009. Taller en el IV Congreso de la SEBICOP de Almería . Año 2009. Reunión en Valencia . Finales del año 2009 y 2010. Finalización de la metodología y elaboración de la primera propuesta de trabajo de campo; coordinado por Felipe Martínez. . Año 2010. Estructura organizativa. Reunión en Madrid con Responsables Territoriales . Año 2010-2012*. Primera fase de trabajo de campo
Resumo:
Un paralelismo entre la investigación en la historia y la investigación en la arquitectura, conduce a la búsqueda de su relación considerada desde el punto de vista del investigador. El primer hallazgo de esta búsqueda es; la compresión de la relación problemática que existe entre el tiempo y el sentido, especialmente en campos de investigación como los mencionados, y la importancia que cobra de esta problemática la Filosofía. Esta compresión, ayuda al entendimiento del papel que ha desarrollado la «Filosofía de la Historia», que con su aparición, cambió la consideración del futuro, como algo que ya no depende de los acontecimientos pasados sino que se puede configurar, bajo las acciones e intenciones del hombre. Con este análisis, se perfila un comportamiento por parte del investigador y por otra, se sustenta una postura teórica cuyo principio consiste en aceptar que el ver y entender lo real sólo se consigue por su transformación en cierta y determinada realidad fundamentada teóricamente
Resumo:
En este artículo se presenta el diseño, implementación y evaluación de tres métodos que permiten realizar la detección y el seguimiento de estructuras de interés seleccionadas por el usuario a lo largo de un conjunto de fotogramas de vídeo quirúrgico. El objetivo de estos métodos es la extracción de la información relativa a las estructuras presentes en una determinada escena quirúrgica en entornos de formación o durante los procedimientos de mínima invasión. Los resultados muestran su directa aplicabilidad a entornos didácticos, por ser técnicas semiautomáticas en las que se requiere interacción del usuario.
Resumo:
Sistema de seguimiento del instrumental laparoscópico basado en marcas artificiales: pruebas iniciales
Resumo:
En los últimos años la movilidad se ha convertido en uno de los puntos de mayor desarrollo dentro de las tecnologías de la información. Uno de los campos en los que las nuevas herramientas de movilidad han encontrado mayor aceptación, es el ámbito de la asistencia sanitaria. Este rápido desarrollo se puede aprovechar para facilitar el cuidado de enfermedades crónicas complejas como el VIH/SIDA que requieren un gran control de la enfermedad y su tratamiento. Dentro del proyecto Hospital VIHrtual se ha creado un portal web con servicios adecuados a los pacientes de VIH y que permite al paciente el acceso en cualquier momento y lugar utilizando su teléfono móvil. Todo ello con el fin de favorecer el cumplimiento del paciente y permitir mejorar su calidad de vida.
Resumo:
La termografía es un método de inspección y diagnóstico basado en la radiación infrarroja que emiten los cuerpos. Permite medir dicha radiación a distancia y sin contacto, obteniendo un termograma o imagen termográfica, objeto de estudio de este proyecto. Todos los cuerpos que se encuentren a una cierta temperatura emiten radiación infrarroja. Sin embargo, para hacer una inspección termográfica hay que tener en cuenta la emisividad de los cuerpos, capacidad que tienen de emitir radiación, ya que ésta no sólo depende de la temperatura del cuerpo, sino también de sus características superficiales. Las herramientas necesarias para conseguir un termograma son principalmente una cámara termográfica y un software que permita su análisis. La cámara percibe la emisión infrarroja de un objeto y lo convierte en una imagen visible, originalmente monocromática. Sin embargo, después es coloreada por la propia cámara o por un software para una interpretación más fácil del termograma. Para obtener estas imágenes termográficas existen varias técnicas, que se diferencian en cómo la energía calorífica se transfiere al cuerpo. Estas técnicas se clasifican en termografía pasiva, activa y vibrotermografía. El método que se utiliza en cada caso depende de las características térmicas del cuerpo, del tipo de defecto a localizar o la resolución espacial de las imágenes, entre otros factores. Para analizar las imágenes y así obtener diagnósticos y detectar defectos, es importante la precisión. Por ello existe un procesado de las imágenes, para minimizar los efectos provocados por causas externas, mejorar la calidad de la imagen y extraer información de las inspecciones realizadas. La termografía es un método de ensayo no destructivo muy flexible y que ofrece muchas ventajas. Por esta razón el campo de aplicación es muy amplio, abarcando desde aplicaciones industriales hasta investigación y desarrollo. Vigilancia y seguridad, ahorro energético, medicina o medio ambiente, son algunos de los campos donde la termografía aportaimportantes beneficios. Este proyecto es un estudio teórico de la termografía, donde se describen detalladamente cada uno de los aspectos mencionados. Concluye con una aplicación práctica, creando una cámara infrarroja a partir de una webcam, y realizando un análisis de las imágenes obtenidas con ella. Con esto se demuestran algunas de las teorías explicadas, así como la posibilidad de reconocer objetos mediante la termografía. Thermography is a method of testing and diagnosis based on the infrared radiation emitted by bodies. It allows to measure this radiation from a distance and with no contact, getting a thermogram or thermal image, object of study of this project. All bodies that are at a certain temperature emit infrared radiation. However, making a thermographic inspection must take into account the emissivity of the body, capability of emitting radiation. This not only depends on the temperature of the body, but also on its surface characteristics. The tools needed to get a thermogram are mainly a thermal imaging camera and software that allows analysis. The camera sees the infrared emission of an object and converts it into a visible image, originally monochrome. However, after it is colored by the camera or software for easier interpretation of thermogram. To obtain these thermal images it exists various techniques, which differ in how heat energy is transferred to the body. These techniques are classified into passive thermography, active and vibrotermografy. The method used in each case depends on the thermal characteristics of the body, the type of defect to locate or spatial resolution of images, among other factors. To analyze the images and obtain diagnoses and defects, accuracy is important. Thus there is a image processing to minimize the effects caused by external causes, improving image quality and extract information from inspections. Thermography is a non-‐destructive test method very flexible and offers many advantages. So the scope is very wide, ranging from industrial applications to research and development.Surveillance and security, energy saving, environmental or medicine are some of the areas where thermography provides significant benefits. This project is a theoretical study of thermography, which describes in detail each of these aspects. It concludes with a practical application, creating an infrared camera from a webcam, and making an analysis of the images obtained with it. This will demonstrate some of the theories explained as well as the ability to recognize objects by thermography.