33 resultados para segmental compression forces

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimal design of a vertical cantilever beam is presented in this paper. The beam is assumed immersed in an elastic Winkler soil and subjected to several loads: a point force at the tip section, its self weight and a uniform distributed load along its length. lbe optimal design problem is to find the beam of a given length and minimum volume, such that the resultant compressive stresses are admisible. This prohlem is analyzed according to linear elasticity theory and within different alternative structural models: column, Navier-Bernoulli beam-column, Timoshenko beamcolumn (i.e. with shear strain) under conservative loads, typically, constant direction loads. Results obtained in each case are compared, in order to evaluate the sensitivity of model on the numerical results. The beam optimal design is described by the section distribution layout (area, second moment, shear area etc.) along the beam span and the corresponding beam total volume. Other situations, some of them very interesting from a theoretical point of view, with follower loads (Beck and Leipholz problems) are also discussed, leaving for future work numerical details and results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Entre los requisitos que deben cumplir las estructuras se debe garantizar que estas posean la durabilidad necesaria para permanecer en servicio a lo largo de todo el periodo de vida útil para el que han sido proyectadas. Para conseguir este objetivo las normativas han ido incorporando prescripciones para el diseño del hormigón, en base a distintas clases de exposición dependiendo del origen y magnitud de la agresividad exterior. En ambientes con una elevada agresividad, una de las comprobaciones que debe cumplir el hormigón es que tenga una permeabilidad inferior a los valores máximos fijados según la clase de exposición, y que en caso de considerar como ensayo de referencia el de penetración de agua, analiza el frente de penetración limitando las profundidades de penetración media y máxima. Adicionalmente a las condiciones de diseño según el tipo de ambiente, principalmente basadas en la dosificación del hormigón en términos de la relación agua/cemento y el mínimo contenido de cemento y el recubrimiento de las armaduras, durante la vida en servicio las estructuras pueden están solicitadas por distintas acciones imprevistas que pueden provocar cambios en la microestructura interna del hormigón que modifican su permeabilidad y resistencia, y por tanto pueden alterar la durabilidad inicialmente prevista. Es conocido el efecto de cansancio del hormigón cuando está solicitado por cargas de compresión mantenidas en el tiempo, provocando bajas en su resistencia debido al incremento de la microfisuración. Dada la relación entre la permeabilidad y la microfisuración del hormigón, es previsible el aumento de la permeabilidad en hormigones que han sido precomprimidos durante un periodo largo de tiempo. Los estudios de la permeabilidad en hormigones previamente comprimidos se han realizado analizando periodos de tiempo de compresión cortos que no permiten evaluar el efecto del cansancio sobre la permeabilidad. La presente tesis doctoral investiga la permeabilidad y resistencia a tracción en hormigones que previamente han sido comprimidos en carga mantenida durante distintos plazos de tiempo, al objeto de conocer su evolución en base al tiempo de precompresión. La investigación se apoya en el estudio de otras dos variables como son el tipo de hormigón de acuerdo a su dosificación según el tipo de ambiente considerando una agresividad baja, media o alta, y el grado de compresión aplicado respecto de su carga última de rotura. En los resultados del plan experimental desarrollado se ha obtenido que la permeabilidad presenta un incremento significante con el tiempo de precompresión, que dependiendo del valor inicial de la permeabilidad que tiene el hormigón puede provocar que hormigones que previamente satisfacen las limitaciones de permeabilidad pasen a incumplirlas, pudiendo afectar a su durabilidad. También se confirma la influencia del tiempo de precompresión sobre la resistencia a tracción obteniendo bajas de resistencia importantes en los casos pésimos ensayados, que deben ser tenidas en consideración en tanto afectan a la capacidad resistente del hormigón como a otros aspectos fundamentales como el anclaje de las armaduras en el hormigón armado y pretensado. One of the requirements that structures must meet is to guarantee their durability to remain in service throughout all the working life period for which they have been designed. To achieve this goal, building standards and codes have included specifications for the design of concrete structures, based on different exposure classes depending on the environmental conditions and their origin and magnitude. In severe aggressive environments, one of the specifications the concrete must meet is to have a permeability lower than the maximum values set for a certain exposure class. If this parameter is referenced to water penetration on specimens, then the average and maximum depths of front penetration are analyzed. In addition to the design conditions depending on the exposure class, which regulate the dosage of concrete in terms of the water/cement ratio, minimum samples that have been pre-compressed for a long period of time. Previous studies on permeability have been carried on pre-compressed concrete elements analyzing short periods of time. However, they have not studied the effects of compression forces on concrete in the long term. This Thesis investigates permeability and tensile strength of concrete samples that have been previously compressed under loads applied for different periods of time. The goal is to understand its evolution based on the time exposed to compression. The research variables also include the type of concrete according to the dosage used - depending on the environmental exposure it will have low, medium or high aggressiveness-, and the amount of compression applied in relation to its failure load. Results of the experimental tests showed that permeability increases significantly over the time of pre-compression. Depending on the initial value of permeability, this change could make the concrete not meet the original permeability restrictions and therefore affect its durability. These investigations also confirmed the influence of time of pre-compression in tensile strength, where some cases showed a significant decrease of resistance. These issues must be taken into consideration as they affect the bearing capacity of the material and other key features such as the anchoring of steel bars in reinforced and pre-stressed concrete. amount of cement content and the minimum concrete cover of the steel bars, during their working life structures may be subject to various unforeseen actions. As a result, the concrete’s internal microstructure might be affected, changing its permeability and resistance, and possibly altering the original specified durability. It is a known fact that when concrete is loaded in compression maintained over a long time, its resistance to compression forces is diminished due to the increase in micro-cracking. Considering the relationship between permeability and microcracking of concrete, an increase in permeability may be expected in concrete

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cyclic compression of several granular systems has been simulated with a molecular dynamics code. All the samples consisted of bidimensional, soft, frictionless and equal-sized particles that were initially arranged according to a squared lattice and were compressed by randomly generated irregular walls. The compression protocols can be described by some control variables (volume or external force acting on the walls) and by some dimensionless factors, that relate stiffness, density, diameter, damping ratio and water surface tension to the external forces, displacements and periods. Each protocol, that is associated to a dynamic process, results in an arrangement with its own macroscopic features: volume (or packing ratio), coordination number, and stress; and the differences between packings can be highly significant. The statistical distribution of the force-moment state of the particles (i.e. the equivalent average stress multiplied by the volume) is analyzed. In spite of the lack of a theoretical framework based on statistical mechanics specific for these protocols, it is shown how the obtained distributions of mean and relative deviatoric force-moment are. Then it is discussed on the nature of these distributions and on their relation to specific protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generic bio-inspired adaptive architecture for image compression suitable to be implemented in embedded systems is presented. The architecture allows the system to be tuned during its calibration phase. An evolutionary algorithm is responsible of making the system evolve towards the required performance. A prototype has been implemented in a Xilinx Virtex-5 FPGA featuring an adaptive wavelet transform core directed at improving image compression for specific types of images. An Evolution Strategy has been chosen as the search algorithm and its typical genetic operators adapted to allow for a hardware friendly implementation. HW/SW partitioning issues are also considered after a high level description of the algorithm is profiled which validates the proposed resource allocation in the device fabric. To check the robustness of the system and its adaptation capabilities, different types of images have been selected as validation patterns. A direct application of such a system is its deployment in an unknown environment during design time, letting the calibration phase adjust the system parameters so that it performs efcient image compression. Also, this prototype implementation may serve as an accelerator for the automatic design of evolved transform coefficients which are later on synthesized and implemented in a non-adaptive system in the final implementation device, whether it is a HW or SW based computing device. The architecture has been built in a modular way so that it can be easily extended to adapt other types of image processing cores. Details on this pluggable component point of view are also given in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The door-closing process can reinforce the impression of a solid, rock-proof, car body or of a rather cheap, flimsy vehicle. As there are no real prototypes during rubber profile bidding-out stages, engineers need to carry out non-linear numerical simulations that involve complex phenomena as well as static and dynamic loads for several profile candidates. This paper presents a structured virtual design tool based on FEM, including constitutive laws and incompressibility constraints allowing to predict more realistically the final closing forces and even to estimate sealing overpressure as an additional guarantee of noise insulation. Comparisons with results of physical tests are performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical response under compression of LiF single crystal micropillars oriented in the [111] direction was studied. Micropillars of different diameter (in the range 1–5 lm) were obtained by etching the matrix in directionally-solidified NaCl–LiF and KCl–LiF eutectic compounds. Selected micropillars were exposed to high-energy Ga+ ions to ascertain the effect of ion irradiation on the mechanical response. Ion irradiation led to an increase of approximately 30% in the yield strength and the maximum compressive strength but no effect of the micropillar diameter on flow stress was found in either the as-grown or the ion irradiated pillars. The dominant deformation micromechanisms were analyzed by means of crystal plasticity finite element simulations of the compression test, which explained the strong effect of micropillar misorientation on the mechanical response. Finally, the lack of size effect on the flow stress was discussed to the light of previous studies in LiF and other materials which show high lattice resistance to dislocation motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of crystal misorientation, geometrical tilt, and contact misalignment on the compression of highly anisotropic single crystal micropillars was assessed by means of crystal plasticity finite element simulations. The investigation was focused in single crystals with the NaCl structure, like MgO or LiF, which present a marked plastic anisotropy as a result of the large difference in the critical resolved shear stress between the “soft” {110}〈110〉 and the “hard” {100}〈110〉 active slip systems. It was found that contact misalignment led to a large reduction in the initial stiffness of the micropillar in crystals oriented in the soft and hard direction. The crystallographic tilt did not modify, however, the initial crystal stiffness. From the viewpoint of the plastic response, none of the effects analyzed led to significant differences in the flow stress when the single crystals were oriented along the “soft” [100] direction. Large differences were found, however, if the single crystal was oriented in the “hard” [111] direction as a result of the activation of the soft slip system. Numerical simulations were in very good agreement with experimental literature data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Result of impact and compression tests on Chojuro, Twentieth Century, Tsu Li, and Ya Li varieties of Asian pears indicate that Chojuro pears are the firmest and most resistant to mechanical damage. At the time of harvest, Tsu Li and Ya Li pears could resist mechanical damage nearly as well as Chojuro pears, but they become more susceptible to bruising in cold storage. Twentieth Century pears are most sensitive to impact and compression bruising. Increased time in the ripening room produces more softening and increased bruise resistance of Chojuro and Twentieth Century pears than of Tsu Li and Ya Li pears.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apple fruits, cv. Granny Smith, were subjected to mechanical impact and compression loads utilizing a steel rod with a spherical tip 19 mm diameter, 50.6 g mass. Energies applied were low enough to produce enzymatic reaction: 0.0120 J for impact, and 0.0199 J for compression. Bruised material was cut and examined with a transmission electron microscope. In both compression and impact, bruises showed a central region located in the flesh parenchyma, at a distance that approximately equalled the indentor tip radius. The parenchyma cells of this region were more altered than cells from the epidermis and hypodermis. Tissues under compression presented numerous deformed parenchyma cells with broken tonoplasts and tissue degradation as predicted by several investigators. The impacted cells supported different kinds of stresses than compressed cells, resulting in the formation of intensive vesiculation, either in the vacuole or in the middle lamella region between cell walls of adjacent cells. A large proportion of parenchyma cells completely split or had initiated splitting at the middle lamella. Bruising may develop with or without cell rupture. Therefore, cell wall rupture is not essential for the development of a bruise, at least the smallest one, as predicted previously

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel compression scheme is proposed, in which hollow targets with specifically curved structures initially filled with uniform matter, are driven by converging shock waves. The self-similar dynamics is analyzed for converging and diverging shock waves. The shock-compressed densities and pressures are much higher than those achieved using spherical shocks due to the geometric accumulation. Dynamic behavior is demonstrated using two-dimensional hydrodynamic simulations. The linear stability analysis for the spherical geometry reveals a new dispersion relation with cut-off mode numbers as a function of the specific heat ratio, above which eigenmode perturbations are smeared out in the converging phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some laboratory tests consisting on quasi-static compression and puncture forces carried out on twelve varieties of apricot during 1990 and 1991 were effective in sorting them. These mechanical properties show a high correlation w i th the ethylene production rate per fruit, so allowing to discriminate between ripeness levels at harvest. In this study it is also demonstrated that puncture seems to be the less variable mechanical test. The values (N/mm) obtained with it show a highly significant correlation with compression resistance and with quasi-static compression damage of the fruits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of high-speed bridges at resonance, particularly under flexural vibrations, constitutes a subject of research for many scientists and engineers at the moment. The topic is of great interest because, as a matter of fact, such kind of behaviour is not unlikely to happen due to the elevated operating speeds of modern rains, which in many cases are equal to or even exceed 300 km/h ( [1,2]). The present paper addresses the subject of the evolution of the wheel-rail contact forces during resonance situations in simply supported bridges. Based on a dimensionless formulation of the equations of motion presented in [4], very similar to the one introduced by Klasztorny and Langer in [3], a parametric study is conducted and the contact forces in realistic situations analysed in detail. The effects of rail and wheel irregularities are not included in the model. The bridge is idealised as an Euler-Bernoulli beam, while the train is simulated by a system consisting of rigid bodies, springs and dampers. The situations such that a severe reduction of the contact force could take place are identified and compared with typical situations in actual bridges. To this end, the simply supported bridge is excited at resonace by means of a theoretical train consisting of 15 equidistant axles. The mechanical characteristics of all axles (unsprung mass, semi-sprung mass, and primary suspension system) are identical. This theoretical train permits the identification of the key parameters having an influence on the wheel-rail contact forces. In addition, a real case of a 17.5 m bridges traversed by the Eurostar train is analysed and checked against the theoretical results. The influence of three fundamental parameters is investigated in great detail: a) the ratio of the fundamental frequency of the bridge and natural frequency of the primary suspension of the vehicle; b) the ratio of the total mass of the bridge and the semi-sprung mass of the vehicle and c) the ratio between the length of the bridge and the characteristic distance between consecutive axles. The main conclusions derived from the investigation are: The wheel-rail contact forces undergo oscillations during the passage of the axles over the bridge. During resonance, these oscillations are more severe for the rear wheels than for the front ones. If denotes the span of a simply supported bridge, and the characteristic distance between consecutive groups of loads, the lower the value of , the greater the oscillations of the contact forces at resonance. For or greater, no likelihood of loss of wheel-rail contact has been detected. The ratio between the frequency of the primary suspension of the vehicle and the fundamental frequency of the bridge is denoted by (frequency ratio), and the ratio of the semi-sprung mass of the vehicle (mass of the bogie) and the total mass of the bridge is denoted by (mass ratio). For any given frequency ratio, the greater the mass ratio, the greater the oscillations of the contact forces at resonance. The oscillations of the contact forces at resonance, and therefore the likelihood of loss of wheel-rail contact, present a minimum for approximately between 0.5 and 1. For lower or higher values of the frequency ratio the oscillations of the contact forces increase. Neglecting the possible effects of torsional vibrations, the metal or composite bridges with a low linear mass have been found to be the ones where the contact forces may suffer the most severe oscillations. If single-track, simply supported, composite or metal bridges were used in high-speed lines, and damping ratios below 1% were expected, the minimum contact forces at resonance could drop to dangerous values. Nevertheless, this kind of structures is very unusual in modern high-speed railway lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis se centra en el estudio de medios granulares blandos y atascados mediante la aplicación de la física estadística. Esta aproximación se sitúa entre los tradicionales enfoques macro y micromecánicos: trata de establecer cuáles son las propiedades macroscópicas esperables de un sistema granular en base a un análisis de las propiedades de las partículas y las interacciones que se producen entre ellas y a una consideración de las restricciones macroscópicas del sistema. Para ello se utiliza la teoría estadística junto con algunos principios, conceptos y definiciones de la teoría de los medios continuos (campo de tensiones y deformaciones, energía potencial elástica, etc) y algunas técnicas de homogeneización. La interacción entre las partículas es analizada mediante las aportaciones de la teoría del contacto y de las fuerzas capilares (producidas por eventuales meniscos de líquido cuando el medio está húmedo). La idea básica de la mecánica estadística es que entre todas soluciones de un problema físico (como puede ser el ensamblaje en equilibrio estático de partículas de un medio granular) existe un conjunto que es compatible con el conocimiento macroscópico que tenemos del sistema (por ejemplo, su volumen, la tensión a la que está sometido, la energía potencial elástica que almacena, etc.). Este conjunto todavía contiene un número enorme de soluciones. Pues bien, si no hay ninguna información adicional es razonable pensar que no existe ningún motivo para que alguna de estas soluciones sea más probable que las demás. Entonces parece natural asignarles a todas ellas el mismo peso estadístico y construir una función matemática compatible. Actuando de este modo se obtiene cuál es la función de distribución más probable de algunas cantidades asociadas a las soluciones, para lo cual es muy importante asegurarse de que todas ellas son igualmente accesibles por el procedimiento de ensamblaje o protocolo. Este enfoque se desarrolló en sus orígenes para el estudio de los gases ideales pero se puede extender para sistemas no térmicos como los analizados en esta tesis. En este sentido el primer intento se produjo hace poco más de veinte años y es la colectividad de volumen. Desde entonces esta ha sido empleada y mejorada por muchos investigadores en todo el mundo, mientras que han surgido otras, como la de la energía o la del fuerza-momento (tensión multiplicada por volumen). Cada colectividad describe, en definitiva, conjuntos de soluciones caracterizados por diferentes restricciones macroscópicas, pero de todos ellos resultan distribuciones estadísticas de tipo Maxwell-Boltzmann y controladas por dichas restricciones. En base a estos trabajos previos, en esta tesis se ha adaptado el enfoque clásico de la física estadística para el caso de medios granulares blandos. Se ha propuesto un marco general para estudiar estas colectividades que se basa en la comparación de todas las posibles soluciones en un espacio matemático definido por las componentes del fuerza-momento y en unas funciones de densidad de estados. Este desarrollo teórico se complementa con resultados obtenidos mediante simulación de la compresión cíclica de sistemas granulares bidimensionales. Se utilizó para ello un método de dinámica molecular, MD (o DEM). Las simulaciones consideran una interacción mecánica elástica, lineal y amortiguada a la que se ha añadido, en algunos casos, la fuerza cohesiva producida por meniscos de agua. Se realizaron cálculos en serie y en paralelo. Los resultados no solo prueban que las funciones de distribución de las componentes de fuerza-momento del sistema sometido a un protocolo específico parecen ser universales, sino que también revelan que existen muchos aspectos computacionales que pueden determinar cuáles son las soluciones accesibles. This thesis focuses on the application of statistical mechanics for the study of static and jammed packings of soft granular media. Such approach lies between micro and macromechanics: it tries to establish what the expected macroscopic properties of a granular system are, by starting from a micromechanical analysis of the features of the particles, and the interactions between them, and by considering the macroscopic constraints of the system. To do that, statistics together with some principles, concepts and definitions of continuum mechanics (e.g. stress and strain fields, elastic potential energy, etc.) as well as some homogenization techniques are used. The interaction between the particles of a granular system is examined too and theories on contact and capillary forces (when the media are wet) are revisited. The basic idea of statistical mechanics is that among the solutions of a physical problem (e.g. the static arrangement of particles in mechanical equilibrium) there is a class that is compatible with our macroscopic knowledge of the system (volume, stress, elastic potential energy,...). This class still contains an enormous number of solutions. In the absence of further information there is not any a priori reason for favoring one of these more than any other. Hence we shall naturally construct the equilibrium function by assigning equal statistical weights to all the functions compatible with our requirements. This procedure leads to the most probable statistical distribution of some quantities, but it is necessary to guarantee that all the solutions are likely accessed. This approach was originally set up for the study of ideal gases, but it can be extended to non-thermal systems too. In this connection, the first attempt for granular systems was the volume ensemble, developed about 20 years ago. Since then, this model has been followed and improved upon by many researchers around the world, while other two approaches have also been set up: energy and force-moment (i.e. stress multiplied by volume) ensembles. Each ensemble is described by different macroscopic constraints but all of them result on a Maxwell-Boltzmann statistical distribution, which is precisely controlled by the respective constraints. According to this previous work, in this thesis the classical statistical mechanics approach is introduced and adapted to the case of soft granular media. A general framework, which includes these three ensembles and uses a force-moment phase space and a density of states function, is proposed. This theoretical development is complemented by molecular dynamics (or DEM) simulations of the cyclic compression of 2D granular systems. Simulations were carried out by considering spring-dashpot mechanical interactions and attractive capillary forces in some cases. They were run on single and parallel processors. Results not only prove that the statistical distributions of the force-moment components obtained with a specific protocol seem to be universal, but also that there are many computational issues that can determine what the attained packings or solutions are.