52 resultados para secure platform
em Universidad Politécnica de Madrid
Resumo:
There are a number of research and development activities that are exploring Time and Space Partition (TSP) to implement safe and secure flight software. This approach allows to execute different real-time applications with different levels of criticality in the same computer board. In order to do that, flight applications must be isolated from each other in the temporal and spatial domains. This paper presents the first results of a partitioning platform based on the Open Ravenscar Kernel (ORK+) and the XtratuM hypervisor. ORK+ is a small, reliable real-time kernel supporting the Ada Ravenscar Computational model that is central to the ASSERT development process. XtratuM supports multiple virtual machines, i.e. partitions, on a single computer and is being used in the Integrated Modular Avionics for Space study. ORK+ executes in an XtratuM partition enabling Ada applications to share the computer board with other applications.
Resumo:
Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare.
Resumo:
The challenges regarding seamless integration of distributed, heterogeneous and multilevel data arising in the context of contemporary, post-genomic clinical trials cannot be effectively addressed with current methodologies. An urgent need exists to access data in a uniform manner, to share information among different clinical and research centers, and to store data in secure repositories assuring the privacy of patients. Advancing Clinico-Genomic Trials (ACGT) was a European Commission funded Integrated Project that aimed at providing tools and methods to enhance the efficiency of clinical trials in the -omics era. The project, now completed after four years of work, involved the development of both a set of methodological approaches as well as tools and services and its testing in the context of real-world clinico-genomic scenarios. This paper describes the main experiences using the ACGT platform and its tools within one such scenario and highlights the very promising results obtained.
Resumo:
Providing experimental facilities for the Internet of Things (IoT) world is of paramount importance to materialise the Future Internet (FI) vision. The level of maturity achieved at the networking level in Sensor and Actuator networks (SAN) justifies the increasing demand on the research community to shift IoT testbed facilities from the network to the service and information management areas. In this paper we present an Experimental Platform fulfilling these needs by: integrating heterogeneous SAN infrastructures in a homogeneous way; providing mechanisms to handle information, and facilitating the development of experimental services. It has already been used to deploy applications in three different field trials: smart metering, smart places and environmental monitoring and it will be one of the components over which the SmartSantander project, that targets a large-scale IoT experimental facility, will rely on
Resumo:
Improving patient self-management can have a greater impact than improving any clinical treatment (WHO). We propose here a systematic and comprehensive user centered design approach for delivering a technological platform for diabetes disease management. The system was developed under the METABO research project framework, involving patients from 3 different clinical centers in Parma, Modena and Madrid.
Resumo:
Presentación de una ponencia invitada en el 4th Annual Pan-European Big Physics Symposium
Resumo:
The ITER CODAC design identifies slow and fast plant system controllers (PSC). The gast OSCs are based on embedded technologies, permit sampling rates greater than 1 KHz, meet stringent real-time requirements, and will be devoted to data acquisition tasks and control purposes. CIEMAT and UPM have implemented a prototype of a fast PSC based on commercial off-the-shelf (COTS) technologies with PXI hardware and software based on EPICS
Resumo:
Modern FPGAs with run-time reconfiguration allow the implementation of complex systems offering both the flexibility of software-based solutions combined with the performance of hardware. This combination of characteristics, together with the development of new specific methodologies, make feasible to reach new points of the system design space, and make embedded systems built on these platforms acquire more and more importance. However, the practical exploitation of this technique in fields that traditionally have relied on resource restricted embedded systems, is mainly limited by strict power consumption requirements, the cost and the high dependence of DPR techniques with the specific features of the device technology underneath. In this work, we tackle the previously reported problems, designing a reconfigurable platform based on the low-cost and low-power consuming Spartan-6 FPGA family. The full process to develop the platform will be detailed in the paper from scratch. In addition, the implementation of the reconfiguration mechanism, including two profiles, is reported. The first profile is a low-area and low-speed reconfiguration engine based mainly on software functions running on the embedded processor, while the other one is a hardware version of the same engine, implemented in the FPGA logic. This reconfiguration hardware block has been originally designed to the Virtex-5 family, and its porting process will be also described in this work, facing the interoperability problem among different families.
Resumo:
The ITER CODAC design identifies slow and fast plant system controllers (PSC). The gast OSCs are based on embedded technologies, permit sampling rates greater than 1 KHz, meet stringent real-time requirements, and will be devoted to data acquisition tasks and control purposes. CIEMAT and UPM have implemented a prototype of a fast PSC based on commercial off-the-shelf (COTS) technologies with PXI hardware and software based on EPICS
Resumo:
Acquired Brain Injury (ABI), either caused by vascular or traumatic nature, is one of the most important causes for neurological disabilities. People who suffer ABI see how their quality of life decreases, due to the affection of one or some of the cognitive functions (memory, attention, language or executive functions). The traditional cognitive rehabilitation protocols are too expensive, so every help carried out in this area is justified. PREVIRNEC is a new platform for cognitive tele-rehabilitation that allows the neuropsychologist to schedule rehabilitation sessions consisted of specifically designed tasks, plus offering an additional way of communication between neuropsychologists and patients. Besides, the platform offers a knowledge management module that allows the optimization of the cognitive rehabilitation to this kind of patients.
Resumo:
La idea inicial de este proyecto surge de la necesidad de desarrollar una herramienta software que ayudase a estudiantes de un curso de iniciación de álgebra lineal a adquirir los conceptos expuestos en el curso mediante la asistencia de cálculos y la representación visual de conceptos e ideas. Algunas de las características o funcionalidades que debería cumplir la herramienta serían: cálculo simbólico, representación simbólica, interfaz gráfico interactivo (point-and-click para realizar operaciones y cálculos, inserción de elementos gráficos mediante drag-and-drop desde una paleta de elementos, representación visual esquemática, representación gráfica 2D y 3D...), persistencia del modelo de datos, etc. Esta fase de un proyecto puede definirse como el – qué –. El siguiente paso o fase del proyecto trata del diseño del proyecto o el – cómo –. Cómo realizar el cálculo numérico, cómo representar símbolos matemáticos en pantalla, cómo crear una paleta de elementos. . . Seguramente existen bibliotecas o APIs de programación para realizar todas estas tareas, sin embargo, su utilización exige al programador tiempo de aprendizaje y el diseño de integración de las diferentes bibliotecas (compatibilidad de versiones, mecanismos de comunicación entre ellas, configuración, etc.). Lo primero puede resolverse fácilmente dedicando tiempo de estudio a la documentación, pero ya implica tiempo. Lo segundo implica además tener que tomar decisiones sobre cómo realizar la integración, no es trivial llegar a dibujar en pantalla, mediante una API de visualización gráfica, una matriz resultado de realizar ciertas operaciones mediante un API de cálculo de álgebra lineal. Existen varias bibliotecas de cálculo de álgebra lineal en las que apoyarse para realizar cálculos. Así pues, es fácil encontrar una biblioteca o API con funciones para realizar operaciones con matrices. Lo que no resulta tan sencillo es encontrar un API que permita definir al programador los mecanismos para representar la matriz en pantalla o para que el usuario introduzca los valores de la matriz. Es en estas últimas tareas en las que el programador se ve obligado a dedicar la mayor parte del tiempo de desarrollo. El resultado de este proyecto supone una gran simplificación de esta segunda fase, la parte del – cómo –, estableciendo una plataforma sobre la que futuros desarrollos puedan basarse para obtener resultados de alta calidad sin tener que preocuparse de las tareas ajenas a la lógica del programa.
Resumo:
This paper proposes a stress detection system based on fuzzy logic and the physiological signals heart rate and galvanic skin response. The main contribution of this method relies on the creation of a stress template, collecting the behaviour of previous signals under situations with a different level of stress in each individual. The creation of this template provides an accuracy of 99.5% in stress detection, improving the results obtained by current pattern recognition techniques like GMM, k-NN, SVM or Fisher Linear Discriminant. In addition, this system can be embedded in security systems to detect critical situations in accesses as cross-border control. Furthermore, its applications can be extended to other fields as vehicle driver state-of-mind management, medicine or sport training.
Resumo:
Biometrics applied to mobile devices are of great interest for security applications. Daily scenarios can benefit of a combination of both the most secure systems and most simple and extended devices. This document presents a hand biometric system oriented to mobile devices, proposing a non-intrusive, contact-less acquisition process where final users should take a picture of their hand in free-space with a mobile device without removals of rings, bracelets or watches. The main contribution of this paper is threefold: firstly, a feature extraction method is proposed, providing invariant hand measurements to previous changes; second contribution consists of providing a template creation based on hand geometric distances, requiring information from only one individual, without considering data from the rest of individuals within the database; finally, a proposal for template matching is proposed, minimizing the intra-class similarity and maximizing the inter-class likeliness. The proposed method is evaluated using three publicly available contact-less, platform-free databases. In addition, the results obtained with these databases will be compared to the results provided by two competitive pattern recognition techniques, namely Support Vector Machines (SVM) and k-Nearest Neighbour, often employed within the literature. Therefore, this approach provides an appropriate solution to adapt hand biometrics to mobile devices, with an accurate results and a non-intrusive acquisition procedure which increases the overall acceptance from the final user.
Resumo:
To date, big data applications have focused on the store-and-process paradigm. In this paper we describe an initiative to deal with big data applications for continuous streams of events. In many emerging applications, the volume of data being streamed is so large that the traditional ‘store-then-process’ paradigm is either not suitable or too inefficient. Moreover, soft-real time requirements might severely limit the engineering solutions. Many scenarios fit this description. In network security for cloud data centres, for instance, very high volumes of IP packets and events from sensors at firewalls, network switches and routers and servers need to be analyzed and should detect attacks in minimal time, in order to limit the effect of the malicious activity over the IT infrastructure. Similarly, in the fraud department of a credit card company, payment requests should be processed online and need to be processed as quickly as possible in order to provide meaningful results in real-time. An ideal system would detect fraud during the authorization process that lasts hundreds of milliseconds and deny the payment authorization, minimizing the damage to the user and the credit card company.
Resumo:
One of the main challenges facing next generation Cloud platform services is the need to simultaneously achieve ease of programming, consistency, and high scalability. Big Data applications have so far focused on batch processing. The next step for Big Data is to move to the online world. This shift will raise the requirements for transactional guarantees. CumuloNimbo is a new EC-funded project led by Universidad Politécnica de Madrid (UPM) that addresses these issues via a highly scalable multi-tier transactional platform as a service (PaaS) that bridges the gap between OLTP and Big Data applications.