5 resultados para scattered data interpolation
em Universidad Politécnica de Madrid
Resumo:
An experimental system designed to measure very low optical powers, of the order of a few picowatts, is presented. Its main aid is to detect the polarisation state of scattered light from a fluid flow, in different angular directions with respect to the longitudinal axis of the flow. A laser beam incident linearly polarized crosses the fluid flow orthogonally. The scattered light is detected by means of a photodetector situated behind a lineal polarizer whose orientation can be rotated. The outgoing electrical signal is amplified by means of a Mode-lockin amplifier and is digitally processed.
Resumo:
In the context of aerial imagery, one of the first steps toward a coherent processing of the information contained in multiple images is geo-registration, which consists in assigning geographic 3D coordinates to the pixels of the image. This enables accurate alignment and geo-positioning of multiple images, detection of moving objects and fusion of data acquired from multiple sensors. To solve this problem there are different approaches that require, in addition to a precise characterization of the camera sensor, high resolution referenced images or terrain elevation models, which are usually not publicly available or out of date. Building upon the idea of developing technology that does not need a reference terrain elevation model, we propose a geo-registration technique that applies variational methods to obtain a dense and coherent surface elevation model that is used to replace the reference model. The surface elevation model is built by interpolation of scattered 3D points, which are obtained in a two-step process following a classical stereo pipeline: first, coherent disparity maps between image pairs of a video sequence are estimated and then image point correspondences are back-projected. The proposed variational method enforces continuity of the disparity map not only along epipolar lines (as done by previous geo-registration techniques) but also across them, in the full 2D image domain. In the experiments, aerial images from synthetic video sequences have been used to validate the proposed technique.
Resumo:
In coffee processing the fermentation stage is considered one of the critical operations by its impact on the final quality of the product. However, the level of control of the fermentation process on each farm is often not adequate; the use of sensorics for controlling coffee fermentation is not common. The objective of this work is to characterize the fermentation temperature in a fermentation tank by applying spatial interpolation and a new methodology of data analysis based on phase space diagrams of temperature data, collected by means of multi-distributed, low cost and autonomous wireless sensors. A real coffee fermentation was supervised in the Cauca region (Colombia) with a network of 24 semi-passive TurboTag RFID temperature loggers with vacuum plastic cover, submerged directly in the fermenting mass. Temporal evolution and spatial distribution of temperature is described in terms of the phase diagram areas which characterizes the cyclic behaviour of temperature and highlights the significant heterogeneity of thermal conditions at different locations in the tank where the average temperature of the fermentation was 21.2 °C, although there were temperature ranges of 4.6°C, and average spatial standard deviation of ±1.21ºC. In the upper part of the tank we found high heterogeneity of temperatures, the higher temperatures and therefore the higher fermentation rates. While at the bottom, it has been computed an area in the phase diagram practically half of the area occupied by the sensors of the upper tank, therefore this location showed higher temperature homogeneity
Resumo:
There is an increasing tendency of turning the current power grid, essentially unaware of variations in electricity demand and scattered energy sources, into something capable of bringing a degree of intelligence by using tools strongly related to information and communication technologies, thus turning into the so-called Smart Grid. In fact, it could be considered that the Smart Grid is an extensive smart system that spreads throughout any area where power is required, providing a significant optimization in energy generation, storage and consumption. However, the information that must be treated to accomplish these tasks is challenging both in terms of complexity (semantic features, distributed systems, suitable hardware) and quantity (consumption data, generation data, forecasting functionalities, service reporting), since the different energy beneficiaries are prone to be heterogeneous, as the nature of their own activities is. This paper presents a proposal on how to deal with these issues by using a semantic middleware architecture that integrates different components focused on specific tasks, and how it is used to handle information at every level and satisfy end user requests.
Resumo:
Sentiment and Emotion Analysis strongly depend on quality language resources, especially sentiment dictionaries. These resources are usually scattered, heterogeneous and limited to specific domains of appli- cation by simple algorithms. The EUROSENTIMENT project addresses these issues by 1) developing a common language resource representation model for sentiment analysis, and APIs for sentiment analysis services based on established Linked Data formats (lemon, Marl, NIF and ONYX) 2) by creating a Language Resource Pool (a.k.a. LRP) that makes avail- able to the community existing scattered language resources and services for sentiment analysis in an interoperable way. In this paper we describe the available language resources and services in the LRP and some sam- ple applications that can be developed on top of the EUROSENTIMENT LRP.