3 resultados para saturation

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quasisteady structure of the corona of a laser-irradiated pellet is completely determined for arbitrary Z, (ion charge number} and re/ra (ratio of critical and ablation radii), and for heat-flux saturation factor/above approximately 0.04. The ion-to-electron temperature ratio at rc grows sensibly with Z,; all other quantities depend weakly and nonmonotonically on Z,. For rc /ra close to unity, and all Z, of interest (Z, < 47}, the flow is subsonic at rc. For a given laser power W, flux saturation may decrease (low/) or increase (high/) the ablation pressure Pa relative to the value obtained when saturation is not considered; in some cases a decrease in/with W fixed increases Pa. For intermediate^ ~0.1), Pa cc (W/r* )2/3 p\n\pc = critical density), independently of rc/ra; for/~0.6, Pa «s larger by a factor of about [rc/raf13. For rjra > 1.2 roughly, the mass ablation rate is C{Z,) [{m/kZ.f^Kr^Pl) l,\ independent of pc and/, and barely dependent on Z,(m, is ion mass; k, Boltzmann's constant; K, conductivity coefficient; and C, a tabulated function).