2 resultados para salmon aquaculture
em Universidad Politécnica de Madrid
Resumo:
The success of an aquaculture breeding program critically depends on the way in which the base population of breeders is constructed since all the genetic variability for the traits included originally in the breeding goal as well as those to be included in the future is contained in the initial founders. Traditionally, base populations were created from a number of wild strains by sampling equal numbers from each strain. However, for some aquaculture species improved strains are already available and, therefore, mean phenotypic values for economically important traits can be used as a criterion to optimize the sampling when creating base populations. Also, the increasing availability of genome-wide genotype information in aquaculture species could help to refine the estimation of relationships within and between candidate strains and, thus, to optimize the percentage of individuals to be sampled from each strain. This study explores the advantages of using phenotypic and genome-wide information when constructing base populations for aquaculture breeding programs in terms of initial and subsequent trait performance and genetic diversity level. Results show that a compromise solution between diversity and performance can be found when creating base populations. Up to 6% higher levels of phenotypic performance can be achieved at the same level of global diversity in the base population by optimizing the selection of breeders instead of sampling equal numbers from each strain. The higher performance observed in the base population persisted during 10 generations of phenotypic selection applied in the subsequent breeding program.
Resumo:
Gamma tocopherol (gT) exhibits beneficial cardiovascular effects partly due to its anti-inflammatory activity. Important sources of gT are vegetable oils. However, little is known to what extent gT can be transferred into marine animal species such as Atlantic salmon by feeding. Therefore, in this study we have investigated the transfer of dietary gT into salmon. To this end, fish were fed a diet supplemented with 170 ppm gT for 16 weeks whereby alpha tocopherol levels were adjusted to 190 ppm in this and the control diet. Feeding gT-rich diets resulted in a three-fold increase in gT concentrations in the liver and fillet compared to non-gT-supplemented controls. Tissue alpha tocopherol levels were not decreased indicating no antagonistic interaction between gamma- and alpha tocopherol in salmon. The concentration of total omega 3 fatty acids slightly increased in response to dietary gT. Furthermore, dietary gT significantly decreased malondialdehyde in the fillet, determined as a biomarker of lipid peroxidation. In the liver of gT fed salmon we observed an overall down-regulation of genes involved in lipid homeostasis. Additionally, gT improved the antioxidant capacity by up-regulating Gpx4a gene expression in the pyloric caeca. We suggest that Atlantic salmon may provide a marine functional source capable of enriching gT for human consumption.