48 resultados para s-uniformity
em Universidad Politécnica de Madrid
Resumo:
Illumination uniformity of a spherical capsule directly driven by laser beams has been assessed numerically. Laser facilities characterized by ND = 12, 20, 24, 32, 48 and 60 directions of irradiation with associated a single laser beam or a bundle of NB laser beams have been considered. The laser beam intensity profile is assumed super-Gaussian and the calculations take into account beam imperfections as power imbalance and pointing errors. The optimum laser intensity profile, which minimizes the root-mean-square deviation of the capsule illumination, depends on the values of the beam imperfections. Assuming that the NB beams are statistically independents is found that they provide a stochastic homogenization of the laser intensity associated to the whole bundle, reducing the errors associated to the whole bundle by the factor , which in turn improves the illumination uniformity of the capsule. Moreover, it is found that the uniformity of the irradiation is almost the same for all facilities and only depends on the total number of laser beams Ntot = ND × NB.
Resumo:
The use of the Laser MegaJoule facility within the shock ignition scheme has been considered. In the first part of the study, one-dimensional hydrodynamic calculations were performed for an inertial confinement fusion capsule in the context of the shock ignition scheme providing the energy gain and an estimation of the increase of the peak power due to the reduction of the photon penetration expected during the high-intensity spike pulse. In the second part, we considered a Laser MegaJoule configuration consisting of 176 laser beams that have been grouped providing two different irradiation schemes. In this configuration the maximum available energy and power are 1.3 MJ and 440 TW. Optimization of the laser?capsule parameters that minimize the irradiation non-uniformity during the first few ns of the foot pulse has been performed. The calculations take into account the specific elliptical laser intensity profile provided at the Laser MegaJoule and the expected beam uncertainties. A significant improvement of the illumination uniformity provided by the polar direct drive technique has been demonstrated. Three-dimensional hydrodynamic calculations have been performed in order to analyse the magnitude of the azimuthal component of the irradiation that is neglected in twodimensional hydrodynamic simulations.
Resumo:
The scope of the present paper is the derivation of a merit function which predicts the visual perception of LED spot lights. The color uniformity level Usl is described by a linear regression function of the spatial color distribution in the far field. Hereby, the function is derived from four basic functions. They describe the color uniformity of spot lights through different features. The result is a reliable prediction for the perceived color uniformity in spot lights. A human factor experiment was performed to evaluate the visual preferences for colors and patterns. A perceived rank order was derived from the subjects’ answers and compared with the four basic functions. The correlation between the perceived rank order and the basic functions was calculated resulting in the definition of the merit function Usl. The application of this function is shown by a comparison of visual evaluations and measurements of LED retrofit spot lamps. The results enable a prediction of color uniformity levels of simulations and measurements concerning the visual perception. The function provides a possibility to evaluate the far field of spot lights without individual subjective judgment. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Spotlighting is one illumination field where the application of light emitting diodes (LED) creates many advantages. Commonly, the system for spot lights consists of a LED light engine and collimating secondary optics. Through angular or spatial separated emitted light from the source and imaging optical elements, a non uniform far field appears with colored rings, dots or patterns. Many feasible combinations result in very different spatial color distributions. Several combinations of three multi-chip light sources and secondary optical elements like reflectors and TIR lenses with additional facets or scattering elements were analyzed mainly regarding the color uniformity. They are assessed by the merit function Usl which was derived from human factor experiments and describes the color uniformity based on the visual perception of humans. Furthermore, the optical systems are compared concerning efficiency, peak candela and aspect ratio. Both types of optics differ in the relation between the color uniformity level and other properties. A plain reflector with a slightly color mixing light source performs adequate. The results for the TIR lenses indicate that they need additional elements for good color mixing or blended light source. The most convenient system depends on the requirements of the application.
Resumo:
La iluminación con diodos emisores de luz (LED) está reemplazando cada vez en mayor medida a las fuentes de luz tradicionales. La iluminación LED ofrece ventajas en eficiencia, consumo de energía, diseño, tamaño y calidad de la luz. Durante más de 50 años, los investigadores han estado trabajando en mejoras LED. Su principal relevancia para la iluminación está aumentando rápidamente. Esta tesis se centra en un campo de aplicación importante, como son los focos. Se utilizan para enfocar la luz en áreas definidas, en objetos sobresalientes en condiciones profesionales. Esta iluminación de alto rendimiento requiere una calidad de luz definida, que incluya temperaturas ajustables de color correlacionadas (CCT), de alto índice de reproducción cromática (CRI), altas eficiencias, y colores vivos y brillantes. En el paquete LED varios chips de diferentes colores (rojo, azul, fósforo convertido) se combinan para cumplir con la distribución de energía espectral con alto CRI. Para colimar la luz en los puntos concretos deseados con un ángulo de emisión determinado, se utilizan blancos sintonizables y diversos colores de luz y ópticas secundarias. La combinación de una fuente LED de varios colores con elementos ópticos puede causar falta de homogeneidad cromática en la distribución espacial y angular de la luz, que debe resolverse en el diseño óptico. Sin embargo, no hay necesidad de uniformidad perfecta en el punto de luz debido al umbral en la percepción visual del ojo humano. Por lo tanto, se requiere una descripción matemática del nivel de uniformidad del color con respecto a la percepción visual. Esta tesis está organizada en siete capítulos. Después de un capítulo inicial que presenta la motivación que ha guiado la investigación de esta tesis, en el capítulo 2 se presentan los fundamentos científicos de la uniformidad del color en luces concentradas, como son: el espacio de color aplicado CIELAB, la percepción visual del color, los fundamentos de diseño de focos respecto a los motores de luz y ópticas no formadoras de imágenes, y los últimos avances en la evaluación de la uniformidad del color en el campo de los focos. El capítulo 3 desarrolla diferentes métodos para la descripción matemática de la distribución espacial del color en un área definida, como son la diferencia de color máxima, la desviación media del color, el gradiente de la distribución espacial de color, así como la suavidad radial y axial. Cada función se refiere a los diferentes factores que influyen en la visión, los cuales necesitan un tratamiento distinto que el de los datos que se tendrán en cuenta, además de funciones de ponderación que pre- y post-procesan los datos simulados o medidos para la reducción del ruido, la luminancia de corte, la aplicación de la ponderación de luminancia, la función de sensibilidad de contraste, y la función de distribución acumulativa. En el capítulo 4, se obtiene la función de mérito Usl para la estimación de la uniformidad del color percibida en focos. Se basó en los resultados de dos conjuntos de experimentos con factor humano realizados para evaluar la percepción visual de los sujetos de los patrones de focos típicos. El primer experimento con factor humano dio lugar al orden de importancia percibida de los focos. El orden de rango percibido se utilizó para correlacionar las descripciones matemáticas de las funciones básicas y la función ponderada sobre la distribución espacial del color, que condujo a la función Usl. El segundo experimento con factor humano probó la percepción de los focos bajo condiciones ambientales diversas, con el objetivo de proporcionar una escala absoluta para Usl, para poder así sustituir la opinión subjetiva personal de los individuos por una función de mérito estandarizada. La validación de la función Usl se presenta en relación con el alcance de la aplicación y condiciones, así como las limitaciones y restricciones que se realizan en el capítulo 5. Se compararon los datos medidos y simulados de varios sistemas ópticos. Se discuten los campos de aplicación , así como validaciones y restricciones de la función. El capítulo 6 presenta el diseño del sistema de focos y su optimización. Una evaluación muestra el análisis de sistemas basados en el reflector y la lente TIR. Los sistemas ópticos simulados se comparan en la uniformidad del color Usl, sensibilidad a las sombras coloreadas, eficiencia e intensidad luminosa máxima. Se ha comprobado que no hay un sistema único que obtenga los mejores resultados en todas las categorías, y que una excelente uniformidad de color se pudo alcanzar por la conjunción de dos sistemas diferentes. Finalmente, el capítulo 7 presenta el resumen de esta tesis y la perspectiva para investigar otros aspectos. ABSTRACT Illumination with light-emitting diodes (LED) is more and more replacing traditional light sources. They provide advantages in efficiency, energy consumption, design, size and light quality. For more than 50 years, researchers have been working on LED improvements. Their main relevance for illumination is rapidly increasing. This thesis is focused on one important field of application which are spotlights. They are used to focus light on defined areas, outstanding objects in professional conditions. This high performance illumination required a defined light quality including tunable correlated color temperatures (CCT), high color rendering index (CRI), high efficiencies and bright, vivid colors. Several differently colored chips (red, blue, phosphor converted) in the LED package are combined to meet spectral power distribution with high CRI, tunable white and several light colors and secondary optics are used to collimate the light into the desired narrow spots with defined angle of emission. The combination of multi-color LED source and optical elements may cause chromatic inhomogeneities in spatial and angular light distribution which needs to solved at the optical design. However, there is no need for perfect uniformity in the spot light due to threshold in visual perception of human eye. Therefore, a mathematical description of color uniformity level with regard to visual perception is required. This thesis is organized seven seven chapters. After an initial one presenting the motivation that has guided the research of this thesis, Chapter 2 introduces the scientific basics of color uniformity in spot lights including: the applied color space CIELAB, the visual color perception, the spotlight design fundamentals with regards to light engines and nonimaging optics, and the state of the art for the evaluation of color uniformity in the far field of spotlights. Chapter 3 develops different methods for mathematical description of spatial color distribution in a defined area, which are the maximum color difference, the average color deviation, the gradient of spatial color distribution as well as the radial and axial smoothness. Each function refers to different visual influencing factors, and they need different handling of data be taken into account, along with weighting functions which pre- and post-process the simulated or measured data for noise reduction, luminance cutoff, the implementation of luminance weighting, contrast sensitivity function, and cumulative distribution function. In chapter 4, the merit function Usl for the estimation of the perceived color uniformity in spotlights is derived. It was based on the results of two sets of human factor experiments performed to evaluate the visual perception of typical spotlight patterns by subjects. The first human factor experiment resulted in the perceived rank order of the spotlights. The perceived rank order was used to correlate the mathematical descriptions of basic functions and weighted function concerning the spatial color distribution, which lead to the Usl function. The second human factor experiment tested the perception of spotlights under varied environmental conditions, with to objective to provide an absolute scale for Usl, so the subjective personal opinion of individuals could be replaced by a standardized merit function. The validation of the Usl function is presented concerning the application range and conditions as well as limitations and restrictions in carried out in chapter 5. Measured and simulated data of various optical several systems were compared. Fields of applications are discussed as well as validations and restrictions of the function. Chapter 6 presents spotlight system design and their optimization. An evaluation shows the analysis of reflector-based and TIR lens systems. The simulated optical systems are compared in color uniformity Usl , sensitivity to colored shadows, efficiency, and peak luminous intensity. It has been found that no single system which performed best in all categories, and that excellent color uniformity could be reached by two different system assemblies. Finally, chapter 7 summarizes the conclusions of the present thesis and an outlook for further investigation topics.
Resumo:
A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail.
Resumo:
We present a review of direct-drive shock ignition studies done as alternative for the Laser Mega-Joule to achieve high thermonuclear gain. One-dimensional analysis of HiPER-like Shock-ignited target designs is presented. It is shown that high gain can be achieved with shock ignition for designs which do not ignite only from the laser compression. Shock ignition is achieved for different targets of the fast ignition family which are driven by an absorbed energy between 100 kJ and 850kJ and deliver thermonuclear energies between 10-130 MJ. Shock-Ignition of Direct-Drive Double-Shell non-cryogenic target is also addressed. 2D results concerning the LMJ irradiation geometry are presented. Few systematic analyses are performed for the fuel assembly irradiation uniformity using the whole LMJ configuration or a part of the facility, and for the ignitor spike uniformity. Solutions for fuel assembly and shock ignition on LMJ using 2D calculations are presented. It is shown that high-gain shock-ignition is possible with intensity of each quad less than 1e15 W/cm2but low modes asymmetries displace the ignitor power in the spike towards higher powers.
Resumo:
In Brazil, a low-latitude country characterized by its high availability and uniformity of solar radiation, the use of PV solar energy integrated in buildings is still incipient. However, at the moment there are several initiatives which give some hints that lead to think that there will be a change shortly. In countries where this technology is already a daily reality, such as Germany, Japan or Spain, the recommendations and basic criteria to avoid losses due to orientation and tilt are widespread. Extrapolating those measures used in high latitudes to all regions, without a previous deeper analysis, is standard practice. They do not always correspond to reality, what frequently leads to false assumptions and may become an obstacle in a country which is taking the first step in this area. In this paper, the solar potential yield for different surfaces in Brazilian cities (located at latitudes between 0° and 30°S) are analyzed with the aim of providing the necessary tools to evaluate the suitability of the buildings’ envelopes for photovoltaic use
Resumo:
The aeronautical charts are a convenient means to provide aeronautical information in a manageable, condensed, and coordinated way. Despite having an extensive regulatory legislation backed by the International Civil Aviation Organization (ICAO), this kind of specialized mapping is defined by a marked symbolical disparity between the different editions published by countries and publishers. This implies not to follow the uniformity and consistency principles that ICAO have identified as essential to help ensure the safety of international civil aviation. Plans for the implementation of a global interoperability of aeronautical information require urgently rethink the way in which, so far, this information has been published and disseminated. A single, transverse, and independent symbolical specification would contribute to the generation of a well defined final-product that provides general purpose aeronautical information for an unequivocal interpretation. The contribution of this article is the verification of the real possibilities for the definition of a general specification that provides the mechanisms for a reliable, indisputable, and legible reading of aeronautical charts under any operational circumstances and conditions. Such conditions must be aligned with the specificities of any country, publishers or crew.
Resumo:
Este proyecto, titulado “Caracterización de colectores para concentración fotovoltaica”, consiste en una aplicación en Labview para obtener las características de los elementos ópticos utilizados en sistemas de concentración fotovoltaica , atendiendo a la distribución espacial del foco de luz concentrado que generan. Un sistema de concentración fotovoltaica utiliza un sistema óptico para transmitir la radiación luminosa a la célula solar aumentando la densidad de potencia luminosa. Estos sistemas ópticos están formados por espejos o lentes para recoger la radiación incidente en ellos y concentrar el haz de luz en una superficie mucho menor. De esta manera se puede reducir el área de material semiconductor necesario, lo que conlleva una importante reducción del coste del sistema. Se pueden distinguir diferentes sistemas de concentración dependiendo de la óptica que emplee, la estructura del receptor o el rango de concentración. Sin embargo, ya que el objetivo es analizar la distribución espacial, diferenciaremos dos tipos de concentradores dependiendo de la geometría que presenta el foco de luz. El concentrador lineal o cilíndrico que enfoca sobre una línea, y el concentrador de foco puntual o circular que enfoca la luz sobre un punto. Debido a esta diferencia el análisis en ambos casos se realizará de forma distinta. El análisis se realiza procesando una imagen del foco tomada en el lugar del receptor, este método se llama LS-CCD (Difusión de luz y captura con CCD). Puede utilizarse en varios montajes dependiendo si se capta la imagen por reflexión o por transmisión en el receptor. En algunos montajes no es posible captar la imagen perpendicular al receptor por lo que la aplicación realizará un ajuste de perspectiva para obtener el foco con su forma original. La imagen del foco ofrece información detallada acerca de la uniformidad del foco mediante el mapa de superficie, que es una representación en 3D de la imagen pero que resulta poco manejable. Una representación más sencilla y útil es la que ofrecen los llamados “perfiles de intensidad”. El perfil de intensidad o distribución de la irradiancia que representa la distribución de la luz para cada distancia al centro, y el perfil acumulado o irradiancia acumulada que representa la luz contenida en relación también al centro. Las representaciones de estos perfiles en el caso de un concentrador lineal y otro circular son distintas debido a su diferente geometría. Mientras que para un foco lineal se expresa el perfil en función de la semi-anchura del receptor, para uno circular se expresa en función del radio. En cualquiera de los casos ofrecen información sobre la uniformidad y el tamaño del foco de luz necesarios para diseñar el receptor. El objetivo de este proyecto es la creación de una aplicación software que realice el procesado y análisis de las imágenes obtenidas del foco de luz de los sistemas ópticos a caracterizar. La aplicación tiene una interfaz sencilla e intuitiva para que pueda ser empleada por cualquier usuario. Los recursos necesarios para realizar el proyecto son: un PC con sistema operativo Windows, el software Labview 8.6 Professional Edition y los módulos NI Vision Development Module (para trabajar con imágenes) y NI Report Generation Toolkit (para realizar reportes y guardar datos de la aplicación). ABSTRACT This project, called “Characterization of collectors for concentration photovoltaic systems”, consists in a Labview application to obtain the characteristics of the optical elements used in photovoltaic concentrator, taking into account the spatial distribution of concentrated light source generated. A concentrator photovoltaic system uses an optical system to transmit light radiation to the solar cell by increasing the light power density. This optical system are formed by mirrors or lenses to collect the radiation incident on them and focus the beam of light in a much smaller surface area. In this way you can reduce the area of semiconductor material needed, which implies a significant reduction in system cost. There are different concentration systems depending on the optics used, receptor structure or concentration range. However, as the aim is to analyze the spatial distribution, distinguish between two types of concentrators depending on the geometry that has the light focus. The linear or cylindrical concentrator that focused on a line, and the circular concentrator that focused light onto a point. Because this difference in both cases the analysis will be carried out differently. The analysis is performed by processing a focus image taken at the receiver site, this method is called “LS-CCD” (Light Scattering and CCD recording). Can be used in several mountings depending on whether the image is captured by reflection or transmission on the receiver. In some mountings it is not possible to capture the image perpendicular to the receivers so that the application makes an adjustment of perspective to get the focus to its original shape. The focus image provides detail information about the uniformity of focus through the surface map, which is a 3D image representation but it is unwieldy. A simple and useful representation is provided by so called “intensity profiles”. The intensity profile or irradiance distribution which represents the distribution of light to each distance to the center. The accumulated profile or accumulated irradiance that represents the cumulative light contained in relation also to the center. The representation of these profiles in the case of a linear and a circular concentrator are different due to their distinct geometry. While for a line focus profile is expressed in terms of semi-width of the receiver, for a circular concentrator is expressed in terms of radius. In either case provides information about the uniformity and size of focus needed to design the receiver. The objective of this project is the creation of a software application to perform processing and analysis of images obtained from light source of optical systems to characterize.The application has a simple and a intuitive interface so it can be used for any users. The resources required for the project are: a PC with Windows operating system, LabVIEW 8.6 Professional Edition and the modules NI Vision Development Module (for working with images) and NI Report Generation Toolkit (for reports and store application data .)
Resumo:
We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.
Resumo:
The bridge over the Mittellandkanal is located in the municipality of Braunschweig, a city of Low Saxony located in Mid-North Germany, between Berlin and Hannover, 50 km away from this last city. The city of Braunschwig has 248.867 inhabitants (December 2010). The orography of the zone is practically even, with some slopes in the surrounding area, with a no important variation of the ground elevation, characterized by a big uniformity and a great visual quality. In this zone the canal flows from west to east, from the Dortmundkanal until the Elbe river, so it has a length of 325,3 km. The normal flora from the zone is farmland with some little forests not very big and not very important. But the Mittellandkanal lies at the North of Brauschweig, that means that in the zone of the canal there is a change between the urban area and the rural area. For this reason in the zone of the bridge we start to find farmlands and forest, however the constructions and buildings are still present in this area. The railway line that is going to be built will unite the North-center of Germany with the North-East of Germany because some of the following factors: •Overstress of the only existing line in the moment that connects Berlin with the North-East extreme of Germany. •No direct connection with the North-Easth Germany with other important German cities from South and West of Germany. •Replacement of the old existing one way line in the area that has to be renewed. •Modernization of the old railway lines of Germany. Schedule order by the European Union and the German Government. The actual lines of the zone do not have the necessary conditions and characteristics to satisfy the demand of the travelers that want to travel all over Germany with the railway avoiding using other transports like plan or car. For these reasons the necessity of the replacement of the old railway line and the aim to create a union with the North-East Germany that has a deficit of transport infrastructures and connections with the rest of the country and Europe. Although the new railway line provokes some disadvantages when constructing it is indispensable to build this railway line. The pass of the railway line through Braunschweig has not been random. The zone Braunschweig-Wolfsburg is a very industrialized area because of some companies like Wolkswagen and too because this zone is an important pass of important line from Berlin, South and East Germany. For all of these reasons the railway line goes through Braunschweig and connects to the city of Wolfsburg first, and after the North-East Germany zone.
Resumo:
Concentration photovoltaic (CPV) systems might produce quite uneven irradiance distributions (both on their level and on their spectral distribution) on the solar cell. This effect can be even more evident when the CPV system is slightly off-axis, since they are often designed to assure good uniformity only at normal incidence. The non-uniformities both in absolute irradiance and spectral content produced by the CPV systems, can originate electrical losses in multi-junction solar cells (MJSC). This works is focused on the integration of ray-tracing methods for simulating the irradiance and spectrum maps produced by different optic systems throughout the solar cell surface, with a 3D fully distributed circuit model which simulates the electrical behavior of a state-of-the-art triple-junction solar cell under the different light distributions obtained with ray-tracing. In this study four different CPV system (SILO, XTP, RTP, and FK) comprising Fresnel lenses concentrating sunlight onto the same solar cell are modeled when working on-axis and 0.6 degrees off-axis. In this study the impact of non-uniformities on a CPV system behavior is revealed. The FK outperforms other Fresnel-based CPV systems in both on-axis and off-axis conditions.
Resumo:
Manufacturing tolerances, along with a high concentration ratio, are key issues in order to obtain cheap CPV systems for mass production. Consequently, this manuscript presents a novel tolerant and cost effective concentrator optic: the domed-shaped Fresnel-Köhler, presenting a curved Fresnel lens as Primary Optical Element (POE). This concentrator is based on two previous successful CPV designs: the FK concentrator, based on a flat Fresnel lens, and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The manuscript shows outstanding simulation results for geometrical concentration factor of Cg? = ?1,230x: high tolerance and high optical efficiency, achieving acceptance angles of 1.18° (dealing to a CAP?=0.72) and efficiencies over 85% (without any anti-reflective coating). Moreover, Köhler integration provides good irradiance uniformity on the cell surface without increasing system complexity by means of any extra element. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.
Resumo:
In order to have a cost-effective CPV system, two key issues must be ensured: high concentration factor and high tolerance. The novel concentrator we are presenting, the dome-shaped Fresnel-Köhler, can widely fulfill these two and other essential issues in a CPV module. This concentrator is based on two previous successful CPV designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, and an optical efficiency of 85% on-axis (no anti-reflective coating has been used). Moreover, Köhler integration provides good irradiance uniformity on the cell surface and low spectral aberration of this irradiance. This ensures an optimal performance of the solar cell, maximizing its efficiency. Besides, the dome-shaped FK shows optimal results for very compact designs, especially in the f/0.7-1.0 range. The dome-shaped Fresnel-Köhler concentrator, natural and enhanced evolution of the flat FK concentrator, is a cost-effective CPV optical design, mainly due to its high tolerances. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.