43 resultados para road traffic injury
em Universidad Politécnica de Madrid
Resumo:
El ruido del tráfico rodado supone aproximadamente la mitad del ruido global ambiental. Las técnicas de control de ruido habitual en emisión (límites de emisión de vehículos) e inmisión (barreras acústicas, doble acristalamiento) no han sido suficientes para disminuir significativamente las molestias por el tráfico rodado en las últimas tres décadas. El efecto positivo de estas técnicas de control ha sido contrarrestado por el aumento de la densidad del tráfico. Por otra parte, la molestia del ruido del tráfico está altamente correlacionada con los niveles máximos de ruido (MNL), producidos por lo general por conductores agresivos. Sin embargo, los sistemas actuales de medición de ruido de tráfico se basan en una valoración global, por lo que no son capaces de discriminar entre los conductores silenciosos y ruidosos. Por lo tanto, en esta tesis se propone un sistema de medida de ruido en el campo cercano, que es capaz de medir la contribución de cada vehículo individual al ruido del tráfico rodado, permitiendo la detección de los conductores ruidosos. Este trabajo describe también una combinación de investigaciones analíticas y experimentales para la identificación de los conductores responsables de la generación de niveles máximos de ruido. El sistema se basa en dos micrófonos embarcados, uno para el ruido del motor y otro para el ruido de rodadura. Con el fin de relacionar estas mediciones de campo cercano con el ruido de los vehículos radiado al campo lejano, se desarrolla un procedimiento completo para la extrapolación del ruido medido por los micrófonos de campo próximo a las posiciones de campo lejano, usando una combinación de predicción analítica y mediciones experimentales. Las correcciones para los niveles extrapolados se deben a factores atmosféricos, al término de divergencia esférica y a las condiciones de absorción de la superficie de propagación. Para el micrófono situado próximo al motor, es necesario también caracterizar las propiedades acústicas del capó del motor. Ambos niveles de ruido se extrapolan de forma independiente a la posición de campo lejano, donde se realiza una comparación entre la predicción y mediciones para confirmar que la metodología es fiable para estimar el impacto a distancia del ruido de tráfico
Resumo:
Many cities in Europe have difficulties to meet the air quality standards set by the European legislation, most particularly the annual mean Limit Value for NO2. Road transport is often the main source of air pollution in urban areas and therefore, there is an increasing need to estimate current and future traffic emissions as accurately as possible. As a consequence, a number of specific emission models and emission factors databases have been developed recently. They present important methodological differences and may result in largely diverging emission figures and thus may lead to alternative policy recommendations. This study compares two approaches to estimate road traffic emissions in Madrid (Spain): the COmputer Programme to calculate Emissions from Road Transport (COPERT4 v.8.1) and the Handbook Emission Factors for Road Transport (HBEFA v.3.1), representative of the ‘average-speed’ and ‘traffic situation’ model types respectively. The input information (e.g. fleet composition, vehicle kilometres travelled, traffic intensity, road type, etc.) was provided by the traffic model developed by the Madrid City Council along with observations from field campaigns. Hourly emissions were computed for nearly 15 000 road segments distributed in 9 management areas covering the Madrid city and surroundings. Total annual NOX emissions predicted by HBEFA were a 21% higher than those of COPERT. The discrepancies for NO2 were lower (13%) since resulting average NO2/NOX ratios are lower for HBEFA. The larger differences are related to diesel vehicle emissions under “stop & go” traffic conditions, very common in distributor/secondary roads of the Madrid metropolitan area. In order to understand the representativeness of these results, the resulting emissions were integrated in an urban scale inventory used to drive mesoscale air quality simulations with the Community Multiscale Air Quality (CMAQ) modelling system (1 km2 resolution). Modelled NO2 concentrations were compared with observations through a series of statistics. Although there are no remarkable differences between both model runs, the results suggest that HBEFA may overestimate traffic emissions. However, the results are strongly influenced by methodological issues and limitations of the traffic model. This study was useful to provide a first alternative estimate to the official emission inventory in Madrid and to identify the main features of the traffic model that should be improved to support the application of an emission system based on “real world” emission factors.
Resumo:
En esta comunicación se presenta el método para obtener modelos equivalentes eléctricos de materiales piezoeléctricos utilizados en entornos con tráfico vial para aplicaciones "Energy Harvesting". Los resultados experimentales se procesan para determinar la estructura topológica óptima y la tecnología de los elementos semiconductores utilizados en la etapa de entrada del sistema de alimentación "harvesting". Asimismo se presenta el modelo de la fuente de alimentación no regulada bajo demanda variable de corriente. Abstract: The method to obtain electrical equivalent models of piezoelectric materials used in energy harvesting road traffic environment is presented in this paper. The experimental results are processed in order to determine the optimal topological structure and technology of the semiconductor elements used in the input stage of the power harvesting system. The non regulated power supply model under variable current demand is also presented.
Resumo:
In this paper we propose a new method for the automatic detection and tracking of road traffic signs using an on-board single camera. This method aims to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. The proposed approach exploits a combination of different features, such as color, appearance, and tracking information. This information is introduced into a recursive Bayesian decision framework, in which prior probabilities are dynamically adapted to tracking results. This decision scheme obtains a number of candidate regions in the image, according to their HS (Hue-Saturation). Finally, a Kalman filter with an adaptive noise tuning provides the required time and spatial coherence to the estimates. Results have shown that the proposed method achieves high detection rates in challenging scenarios, including illumination changes, rapid motion and significant perspective distortion
Resumo:
Transport is responsible for 41% of CO2 emissions in Spain, and around 65% of that figure is due to road traffic. Tolled motorways are currently managed according to economic criteria: minimizing operational costs and maximizing revenues from tolls. Within this framework, this paper develops a new methodology for managing motorways based on a target of maximum energy efficiency. It includes technological and demand-driven policies, which are applied to two case studies. Various conclusions emerge from this study. One is, that the use of intelligent payment systems is recommended; and another, is that the most sustainable policy would involve defining the most efficient strategy for each motorway section, including the maximum use of its capacity, the toll level which attracts the most vehicles, and the optimum speed limit for each type of vehicle.
Resumo:
In this paper we propose an innovative method for the automatic detection and tracking of road traffic signs using an onboard stereo camera. It involves a combination of monocular and stereo analysis strategies to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. Firstly, an adaptive color and appearance based detection is applied at single camera level to generate a set of traffic sign hypotheses. In turn, stereo information allows for sparse 3D reconstruction of potential traffic signs through a SURF-based matching strategy. Namely, the plane that best fits the cloud of 3D points traced back from feature matches is estimated using a RANSAC based approach to improve robustness to outliers. Temporal consistency of the 3D information is ensured through a Kalman-based tracking stage. This also allows for the generation of a predicted 3D traffic sign model, which is in turn used to enhance the previously mentioned color-based detector through a feedback loop, thus improving detection accuracy. The proposed solution has been tested with real sequences under several illumination conditions and in both urban areas and highways, achieving very high detection rates in challenging environments, including rapid motion and significant perspective distortion
Resumo:
This article describes a knowledge-based application in the domain of road traffic management that we have developed following a knowledge modeling approach and the notion of problem-solving method. The article presents first a domain-independent model for real-time decision support as a structured collection of problem solving methods. Then, it is described how this general model is used to develop an operational version for the domain of traffic management. For this purpose, a particular knowledge modeling tool, called KSM (Knowledge Structure Manager), was applied. Finally, the article shows an application developed for a traffic network of the city of Madrid and it is compared with a second application developed for a different traffic area of the city of Barcelona.
Resumo:
The aim of this paper is to describe an intelligent system for the problem of real time road traffic control. The purpose of the system is to help traffic engineers in the selection of the state of traffic control devices on real time, using data recorded by traffic detectors on motorways. The system follows an advanced knowledge-based approach that implements an abstract generic problem solving method, called propose-and-revise, which was proposed in Artificial Intelligence, within the knowledge engineering field, as a standard cognitive structure oriented to solve configuration design problems. The paper presents the knowledge model of such a system together with the strategy of inference and describes how it was applied for the case of the M-40 urban ring for the city of Madrid.
Resumo:
Road traffic is the greatest contributor to the carbon footprint of the transport sector and reducing it has become one of the main targets of sustainable transport policies. An analysis of the main factors influencing greenhouse gas (GHG) emissions is essential for designing new energy- and environmentally efficient strategies for the road transport. This paper addresses this need by (i) identifying factors which influence the carbon footprint, including traffic activity, fuel economy and socioeconomic development; and (ii) proposing a methodological framework which uses Modified Laspeyres Index decomposition to analyze the effect of important drivers on the changes in emissions of road transport in Spain during the period from 1990 to 2010. The results demonstrate that the country׳s economic growth has been closely linked to the rise in GHG emissions. The innovative contribution of this paper is the special analysis of the changes in mobility patterns and GHG emissions during the economic crisis, when, for the first time, Spanish road traffic emissions decreased. The reduction of road transport and improved energy efficiency has been powerful contributors to this decrease, demonstrating the effectiveness of energy-saving measures. On the basis of this analysis, several tailored policy recommendations have been suggested for future implementation.
Resumo:
El sector del transporte por carretera es uno de los principales contribuyentes de consumo de combustible y emisiones de España. Por lo tanto, la evaluación de los impactos ambientales del tráfico rodado es esencial para los programas de mitigación del cambio climático y la eficiencia energética. Sin embargo, uno de los retos en la planificación del transporte y el diseño de políticas consiste en la aplicación de metodologías de evaluación de emisiones consistentes, el diseño de estrategias y la evaluación de su eficacia. Las metodologías existentes de evaluación de las emisiones del transporte por carretera, utilizan diferentes niveles de análisis y períodos. Sin embargo, estos análisis son puntuales y no existe una continuidad en el análisis de diferentes estrategias o políticas. Esta tesis doctoral proporciona conocimientos y herramientas para el análisis de las políticas destinadas a reducir las emisiones de tráfico, tomando España como caso de estudio. La investigación se estructura en dos partes: i) el desarrollo y aplicación de metodologías para el análisis de factores y políticas que contribuyen en la evolución de las emisiones GEI del transporte por carretera en España; desde una perspectiva nacional; y ii) el desarrollo y aplicación de un marco metodológico para estimar las emisiones del tráfico interurbano y de evaluar estrategias centradas en la operación del tráfico y en la infraestructura. En resumen, esta tesis demuestra la idoneidad de utilizar diferentes herramientas para analizar las emisiones de tráfico desde diferentes puntos de vista. Desde el diseño de políticas de mitigación y eficiencia energética a nivel nacional, a estrategias centradas en la operación del tráfico interurbano y la infraestructura. Road transport is one of the major contributors to fuel consumption and emissions in Spain. Consequently, assessing the environmental impacts of road traffic is essential for climate change mitigation and energy efficiency programs. However, one of the key challenges of policy makers and transport planners consists of implementing consistent assessment emissions methodologies, applying mitigation strategies, and knowing their effectiveness. Current state-of-the-art emissions assessment methodologies estimate emissions from different levels and periods, using different approaches. Nevertheless, these studies are timely and they usually take different methodologies for analysing different strategies or policies, regardless of the assessment as a whole. This doctoral thesis provides knowledge and methodologies for analysing policies designed to reduce road traffic emissions, using the case study of Spain. The research procedure consists of two main scopes: i) the development and application of methodologies for analysing key factors and policies driving the GHG emissions of road transport in Spain; from a national perspective; and ii) the development and application of a road traffic emissions model for assessing operational and infrastructure strategies of the interurban road network at segment level. In summary, this thesis demonstrates the appropriateness to use different tools to analyse road traffic emissions at different levels: from appropriate nationwide mitigation and energy efficiency policies, to strategies focused on the operation of interurban traffic and infrastructure.
Resumo:
The achievement of the limit values established in the European legislation pose an important handicap for large urban areas with intense road traffic, such as Madrid (Spain). Despite permanent measures included in air quality plans it is important to assess additional measures that may be temporally applied under unfavourable conditions. This paper reports on the simulation of different traffic restriction strategies in Madrid for high-pollution episodes.
Resumo:
Entre los problemas medioambientales más trascendentales para la sociedad, se encuentra el del cambio climático así como el de la calidad del aire en nuestras áreas metropolitanas. El transporte por carretera es uno de los principales causantes, y como tal, las administraciones públicas se enfrentan a estos problemas desde varios ángulos: Cambios a modos de transporte más limpios, nuevas tecnologías y combustibles en los vehículos, gestión de la demanda y el uso de tecnologías de la información y la comunicación (ICT) aplicadas al transporte. En esta tesis doctoral se plantea como primer objetivo el profundizar en la comprensión de cómo ciertas medidas ICT afectan al tráfico, las emisiones y la propia dinámica de los vehículos. El estudio se basa en una campaña de recogida de datos con vehículos flotantes para evaluar los impactos de cuatro medidas concretas: Control de velocidad por tramo, límites variables de velocidad, limitador de velocidad (control de crucero) y conducción eficiente (eco‐driving). Como segundo objetivo, el estudio se centra en la conducción eficiente, ya que es una de las medidas que más ahorros de combustible presenta a nivel individual. Aunque estas reducciones están suficientemente documentadas en la literatura, muy pocos estudios se centran en estudiar el efecto que los conductores eficientes pueden tener en el flujo de tráfico, y cuál sería el impacto si se fuera aumentando el porcentaje de este tipo de conductores. A través de una herramienta de microsimulación de tráfico, se han construido cuatro modelos de vías urbanas que se corresponden con una autopista urbana, una arteria, un colector y una vía local. Gracias a los datos recogidos en la campaña de vehículos flotantes, se ha calibrado el modelo, tanto el escenario base como el ajuste de parámetros de conducción para simular la conducción eficiente. En total se han simulado 72 escenarios, variando el tipo de vía, la demanda de tráfico y el porcentaje de conductores eficientes. A continuación se han calculado las emisiones de CO2 and NOx mediante un modelo de emisiones a nivel microscópico. Los resultados muestran que en escenarios con alto porcentaje de conductores eficientes y altas demandas de tráfico las emisiones aumentan. Esto se debe a que las mayores distancias de seguridad y las aceleraciones y frenadas suaves hacen que aumente la congestión, produciendo así mayores emisiones a nivel global. Climate change and the reduced air quality in our metropolitan areas are two of the main environmental problems that the society is addressing currently. Being road transportation one of the main contributors, public administrations are facing these problems from different points of view: shift to cleaner modes, new fuels and vehicle technologies, demand management and the use of information and communication technologies (ICT) applied to transportation. The first objective of this thesis is to understand how certain ICT measures affect traffic, emissions and vehicle dynamics. The study is based on a data collection campaign with floating vehicles to evaluate the impact of four specific measures: section speed control, variable speed limits, cruise control and eco‐driving. The second objective of the study focuses on eco‐driving, as it is one of the measures that present the largest fuel savings at an individual level. Although these savings are well documented in the literature, few studies focus on how ecodrivers affect the surrounding vehicles and the traffic, and what would be the impact in case of different eco‐drivers percentage. Using a traffic micro‐simulation tool, four models in urban context have been built, corresponding to urban motorway, urban arterial, urban collector and a local street. Both the base‐case and the parameters setting to simulate eco‐driving have been calibrated with the data collected through floating vehicles. In total 72 scenarios were simulated, varying the type of road, traffic demand and the percentage of eco‐drivers. Then, the CO2 and NOx emissions have been estimated through the use of an emission model at microscopic level. The results show that in scenarios with high percentage of co‐drivers and high traffic demand the emissions rise. Higher headways and smooth acceleration and decelerations increase congestion, producing higher emissions globally.
Resumo:
Emission inventories are databases that aim to describe the polluting activities that occur across a certain geographic domain. According to the spatial scale, the availability of information will vary as well as the applied assumptions, which will strongly influence its quality, accuracy and representativeness. This study compared and contrasted two emission inventories describing the Greater Madrid Region (GMR) under an air quality simulation approach. The chosen inventories were the National Emissions Inventory (NEI) and the Regional Emissions Inventory of the Greater Madrid Region (REI). Both of them were used to feed air quality simulations with the CMAQ modelling system, and the results were compared with observations from the air quality monitoring network in the modelled domain. Through the application of statistical tools, the analysis of emissions at cell level and cell – expansion procedures, it was observed that the National Inventory showed better results for describing on – road traffic activities and agriculture, SNAP07 and SNAP10. The accurate description of activities, the good characterization of the vehicle fleet and the correct use of traffic emission factors were the main causes of such a good correlation. On the other hand, the Regional Inventory showed better descriptions for non – industrial combustion (SNAP02) and industrial activities (SNAP03). It incorporated realistic emission factors, a reasonable fuel mix and it drew upon local information sources to describe these activities, while NEI relied on surrogation and national datasets which leaded to a poorer representation. Off – road transportation (SNAP08) was similarly described by both inventories, while the rest of the SNAP activities showed a marginal contribution to the overall emissions.
Resumo:
La idea principal de este proyecto es realizar un estudio temporal de los parámetros necesarios para evaluar el ruido ambiental. En la actualidad son muchas las medidas que se hacen a diario para evaluar el nivel de ruido ambiente, sin embargo, este nivel no es el mismo siempre. Dependiendo del momento en el que se realicen las medidas, de la longitud de la muestra tomada etc., los resultados pueden llegar a ser muy dispares entre sí. En este proyecto se estudiarán los parámetros temporales con el objetivo de determinar las características más apropiadas de la muestra que se debe tomar a la hora de realizar medidas del nivel de ruido, de tal forma que se obtengan los resultados más apropiados con un margen de error pequeño y conocido. Para comenzar, se eligieron los puntos de medida en los que se quiere centrar el estudio. En el presente proyecto se va a analizar el ruido ambiente, principalmente procedente del tráfico rodado, existente en 3 rotondas y una semirotonda. Para ello se comenzó realizando registros de larga duración del nivel de ruido de manera continua a lo largo de todo el periodo diurno, que comprende desde las 7:00 h hasta las 19:00 h. La adquisición de estos datos se realizó con una grabadora digital y un micrófono. Posteriormente, los datos registrados se volcaron al ordenador y se procesaron con el sistema de medida Symphonie con el que de obtuvieron los parámetros necesarios para el análisis. Una vez obtenidos los niveles de los registros, el siguiente paso consistió en realizar diferentes procesos de muestreo para obtener resultados y finalmente elaborar conclusiones. ABSTRACT The main idea of this project is to realice a temporary study of the necessary parameters to evaluate the ambiental noise. Nowadays, a lot of measures are done everyday to evaluate the ambiental noise, however, this level is not always the same. The results can be very different one from another depending of the moment when this measures are done, the length of the sample, etc. In this project, temporary parameters will be studied with the aim of determine the more apropiate characteristics to the sample to be taken when performing the noise level measurements, so as to obtain the most appropriate results with an small and known error margin. To start, the points where you want to focus the study were chosen. In this project we will analyze the ambient noise, mainly by road traffic, existing over three roundabouts and one semi-roundabout. For this purpose we begin performing long-term registers of the noise level throughout the day period continuously, which is from 7:00h to 19:00h. The acquisition of this data was performed with a digital recorder and a microphone. Later, data recorded were fed into the computer and processed with Symphonie measuring system, with which we obtained the parameters for the analysys. Once the level from the registers are obtained, the next step was to perform different sampling processes to get results and finally draw conclusions.
Resumo:
The development of new-generation intelligent vehicle technologies will lead to a better level of road safety and CO2 emission reductions. However, the weak point of all these systems is their need for comprehensive and reliable data. For traffic data acquisition, two sources are currently available: 1) infrastructure sensors and 2) floating vehicles. The former consists of a set of fixed point detectors installed in the roads, and the latter consists of the use of mobile probe vehicles as mobile sensors. However, both systems still have some deficiencies. The infrastructure sensors retrieve information fromstatic points of the road, which are spaced, in some cases, kilometers apart. This means that the picture of the actual traffic situation is not a real one. This deficiency is corrected by floating cars, which retrieve dynamic information on the traffic situation. Unfortunately, the number of floating data vehicles currently available is too small and insufficient to give a complete picture of the road traffic. In this paper, we present a floating car data (FCD) augmentation system that combines information fromfloating data vehicles and infrastructure sensors, and that, by using neural networks, is capable of incrementing the amount of FCD with virtual information. This system has been implemented and tested on actual roads, and the results show little difference between the data supplied by the floating vehicles and the virtual vehicles.