2 resultados para right to health
em Universidad Politécnica de Madrid
Resumo:
The deployment of home-based smart health services requires effective and reliable systems for personal and environmental data management. ooperation between Home Area Networks (HAN) and Body Area Networks (BAN) can provide smart systems with ad hoc reasoning information to support health care. This paper details the implementation of an architecture that integrates BAN, HAN and intelligent agents to manage physiological and environmental data to proactively detect risk situations at the digital home. The system monitors dynamic situations and timely adjusts its behavior to detect user risks concerning to health. Thus, this work provides a reasoning framework to infer appropriate solutions in cases of health risk episodes. Proposed smart health monitoring approach integrates complex reasoning according to home environment, user profile and physiological parameters defined by a scalable ontology. As a result, health care demands can be detected to activate adequate internal mechanisms and report public health services for requested actions.
Resumo:
We consider the situation where there are several alternatives for investing a quantity of money to achieve a set of objectives. The choice of which alternative to apply depends on how citizens and political representatives perceive that such objectives should be achieved. All citizens with the right to vote can express their preferences in the decision-making process. These preferences may be incomplete. Political representatives represent the citizens who have not taken part in the decision-making process. The weight corresponding to political representatives depends on the number of citizens that have intervened in the decision-making process. The methodology we propose needs the participants to specify for each alternative how they rate the different attributes and the relative importance of attributes. On the basis of this information an expected utility interval is output for each alternative. To do this, an evidential reasoning approach is applied. This approach improves the insightfulness and rationality of the decision-making process using a belief decision matrix for problem modeling and the Dempster?Shafer theory of evidence for attribute aggregation. Finally, we propose using the distances of each expected utility interval from the maximum and the minimum utilities to rank the alternative set. The basic idea is that an alternative is ranked first if its distance to the maximum utility is the smallest, and its distance to the minimum utility is the greatest. If only one of these conditions is satisfied, a distance ratio is then used.