3 resultados para reverse genetics
em Universidad Politécnica de Madrid
Resumo:
The main objective of this article is to characterize the reverse logistics system for mobile phones in Spain. The study includes the characterization of the different actors involved in the reverse logistics system and the description of the most common logistics practices in the sector. We will also opose alternative practices for managing this complex reverse logistics system and finally, we analyse the challenges of the current reverse logistics model. Some alternatives for the current model are location of reception points for end-of-use mobiles, the need to legislate the secondhand mobile phone market, and the location of the necessary recycling centres according to current legislation.
Resumo:
Waste produced during the service life of automobiles has received much less attention than end-of-life vehicles themselves. In this paper, we deal with the set up of a reverse logistics system for the collection and treatment of use-phase residues. First, the type of waste arising during vehicles? service life is characterized. Data were collected in collaboration with SIGRAUTO, the product stewardship organization in charge of vehicles? recovery in Spain. Next, three organizational models are proposed. The three alternatives are benchmarked and assessed from a double organizational and operational perspective for the particular case of the Madrid region in Spain
Resumo:
El artículo aborda el problema del encaje de diversas imágenes de una misma escena capturadas por escáner 3d para generar un único modelo tridimensional. Para ello se utilizaron algoritmos genéticos. ABSTRACT: This work introduces a solution based on genetic algorithms to find the overlapping area between two point cloud captures obtained from a three-dimensional scanner. Considering three translation coordinates and three rotation angles, the genetic algorithm evaluates the matching points in the overlapping area between the two captures given that transformation. Genetic simulated annealing is used to improve the accuracy of the results obtained by the genetic algorithm.