4 resultados para resource dependence theory
em Universidad Politécnica de Madrid
Resumo:
Este proyecto se basa en la comparación de un modelo de flujo lineal frente a un modelo de ecuaciones completas. Con esta motivación se empleará un programa de cada tipo. Los elegidos son el WAsP y el WindSim respectivamente. Tras una breve descripción de cada programa, estudiaremos los distintos elementos que los componen y su estructura. Entre todas las posibilidades que presentan ambos programas, el proyecto se centrará en la estimación del recurso eólico. En teoría, el programa que emplea un modelo lineal no será apto en terrenos complejos, por ello se tratará de estimar el error cometido por el modelo lineal tomando como referencia el modelo de ecuaciones completas. Con el objetivo de comparar ambos programas y poder distinguir sus diferencias, se plantea un caso común, en el cual se evaluarán distintas condiciones meteorológicas para colinas de forma gaussiana y distinta pendiente. Con ello se pretende medir la evolución de la precisión del WAsP conforme el terreno se va haciendo más complejo. Otras variables a tener en cuenta serán la variación de la velocidad del viento y la altura del punto de cálculo. Finalmente se analizan y explican los resultados obtenidos acompañados de elementos visuales proporcionados por los programas. 2. Abstract The main objective of this project is the comparison of two models, one based on the lineal flux and the other based on the complete equations. Thanks to two different computer programmes, WAsP and WindSim, the first one using a linear model and the second one using a complete equation model, we will be able to highlight the main differences between both models. Furthermore, a description of the structure and elements of each program will be outlined. This project will focus on the estimation of the wind resource. In theory, the program which uses a linear model will not be useful in complex terrains. Therefore, we will try to estimate the fault of the lineal model comparing it to the complete equation model. In order to be able to distinguish the differences between both programmes, the same exercise will be proposed to be solved by both of them. Here a range of meteorological conditions will be evaluated over a Gaussian hill with a slope that varies. Thereby, we will be able to measure the evolution of the precision of WAsP according to the increase of the slope. Finally, the results are analysed and explained with help of some visual characters.
Resumo:
The presented works aim at proposing a methodology for the simulation of offshore wind conditions using CFD. The main objective is the development of a numerical model for the characterization of atmospheric boundary layers of different stability levels, as the most important issue in offshore wind resource assessment. Based on Monin-Obukhov theory, the steady k-ε Standard turbulence model is modified to take into account thermal stratification in the surface layer. The validity of Monin-Obukhov theory in offshore conditions is discussed with an analysis of a three day episode at FINO-1 platform.
Resumo:
An asymptotic analysis of the Langmuir-probe problem in a quiescent, fully ionized plasma in a strong magnetic field is performed, for electron cyclotron radius and Debye length much smaller than probe radius, and this not larger than either ion cyclotron radius or mean free path. It is found that the electric potential, which is not confined to a sheath, controls the diffusion far from the probe; inside the magnetic tube bounded by the probe cross section the potential overshoots to a large value before decaying to its value in the body of the plasma. The electron current is independent of the shape of the body along the field and increases with ion temperature; due to the overshoot in the potential, (1) the current at negative voltages does not vary exponentially, (2) its magnitude is strongly reduced by the field, and (3) the usual sharp knee at space potential, disappears. In the regions of the C-V diagram studied the ion current is negligible or unaffected by the field. Some numerical results are presented.The theory, which fails beyond certain positive voltage, fields useful results for weak fields, too.
Resumo:
We present a novel general resource analysis for logic programs based on sized types. Sized types are representations that incorporate structural (shape) information and allow expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. They also allow relating the sizes of terms and subterms occurring at different argument positions in logic predicates. Using these sized types, the resource analysis can infer both lower and upper bounds on the resources used by all the procedures in a program as functions on input term (and subterm) sizes, overcoming limitations of existing resource analyses and enhancing their precision. Our new resource analysis has been developed within the abstract interpretation framework, as an extension of the sized types abstract domain, and has been integrated into the Ciao preprocessor, CiaoPP. The abstract domain operations are integrated with the setting up and solving of recurrence equations for inferring both size and resource usage functions. We show that the analysis is an improvement over the previous resource analysis present in CiaoPP and compares well in power to state of the art systems.