21 resultados para reserve demand
em Universidad Politécnica de Madrid
Resumo:
We define a capacity reserve model to dimension passenger car service installations according to the demographic distribution of the area to be serviced by using hospital?s emergency room analogies. Usually, service facilities are designed applying empirical methods, but customers arrive under uncertain conditions not included in the original estimations, and there is a gap between customer?s real demand and the service?s capacity. Our research establishes a valid methodology and covers the absence of recent researches and the lack of statistical techniques implementation, integrating demand uncertainty in a unique model built in stages by implementing ARIMA forecasting, queuing theory, and Monte Carlo simulation to optimize the service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Our model has proved to be a useful tool for optimal decision making under uncertainty integrating the prediction of the cost implicit in the reserve capacity to serve unexpected demand and defining a set of new process indicators, such us capacity, occupancy, and cost of capacity reserve never studied before. The new indicators are intended to optimize the service operation. This set of new indicators could be implemented in the information systems used in the passenger car services.
Resumo:
El objetivo de esta investigación consiste en definir un modelo de reserva de capacidad, por analogías con emergencias hospitalarias, que pueda ser implementado en el sector de servicios. Este está específicamente enfocado a su aplicación en talleres de servicio de automóviles. Nuestra investigación incorpora la incertidumbre de la demanda en un modelo singular diseñado en etapas que agrupa técnicas ARIMA, teoría de colas y simulación Monte Carlo para definir los conceptos de capacidad y ocupación de servicio, que serán utilizados para minimizar el coste implícito de la reserva capacidad necesaria para atender a clientes que carecen de cita previa. Habitualmente, las compañías automovilísticas estiman la capacidad de sus instalaciones de servicio empíricamente, pero los clientes pueden llegar bajo condiciones de incertidumbre que no se tienen en cuenta en dichas estimaciones, por lo que existe una diferencia entre lo que el cliente realmente demanda y la capacidad que ofrece el servicio. Nuestro enfoque define una metodología válida para el sector automovilístico que cubre la ausencia genérica de investigaciones recientes y la habitual falta de aplicación de técnicas estadísticas en el sector. La equivalencia con la gestión de urgencias hospitalarias se ha validado a lo largo de la investigación en la se definen nuevos indicadores de proceso (KPIs) Tal y como hacen los hospitales, aplicamos modelos estocásticos para dimensionar las instalaciones de servicio de acuerdo con la distribución demográfica del área de influencia. El modelo final propuesto integra la predicción del coste implícito en la reserva de capacidad para atender la demanda no prevista. Asimismo, se ha desarrollado un código en Matlab que puede integrarse como un módulo adicional a los sistemas de información (DMS) que se usan actualmente en el sector, con el fin de emplear los nuevos indicadores de proceso definidos en el modelo. Los resultados principales del modelo son nuevos indicadores de servicio, tales como la capacidad, ocupación y coste de reserva de capacidad, que nunca antes han sido objeto de estudio en la industria automovilística, y que están orientados a gestionar la operativa del servicio. ABSTRACT Our aim is to define a Capacity Reserve model to be implemented in the service sector by hospital's emergency room (ER) analogies, with a practical approach to passenger car services. A stochastic model has been implemented using R and a Monte Carlo simulation code written in Matlab and has proved a very useful tool for optimal decision making under uncertainty. The research integrates demand uncertainty in a unique model which is built in stages by implementing ARIMA forecasting, Queuing Theory and a Monte Carlo simulation to define the concepts of service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Usually, passenger car companies estimate their service facilities capacity using empirical methods, but customers arrive under uncertain conditions not included in the estimations. Thus, there is a gap between customer’s real demand and the dealer’s capacity. This research sets a valid methodology for the passenger car industry to cover the generic absence of recent researches and the generic lack of statistical techniques implementation. The hospital’s emergency room (ER) equalization has been confirmed to be valid for the passenger car industry and new process indicators have been defined to support the study. As hospitals do, we aim to apply stochastic models to dimension installations according to the demographic distribution of the area to be serviced. The proposed model integrates the prediction of the cost implicit in the reserve capacity to serve unexpected demand. The Matlab code could be implemented as part of the existing information technology systems (ITs) to support the existing service management tools, creating a set of new process indicators. Main model outputs are new indicators, such us Capacity, Occupancy and Cost of Capacity Reserve, never studied in the passenger car service industry before, and intended to manage the service operation.
Resumo:
This paper presents the results of the analysis focused on scientific-technological KT in four Mexican firms and carried out by the case study approach. The analysis highlights the use of KT mechanisms as a means to obtain scientific-technological knowledge, learning, building S&T capabilities, and achieve the results of the R&D and innovation by firms.
Resumo:
Predictions about electric energy needs, based on current electric energy models, forecast that the global energy consumption on Earth for 2050 will double present rates. Using distributed procedures for control and integration, the expected needs can be halved. Therefore implementation of Smart Grids is necessary. Interaction between final consumers and utilities is a key factor of future Smart Grids. This interaction is aimed to reach efficient and responsible energy consumption. Energy Residential Gateways (ERG) are new in-building devices that will govern the communication between user and utility and will control electric loads. Utilities will offer new services empowering residential customers to lower their electric bill. Some of these services are Smart Metering, Demand Response and Dynamic Pricing. This paper presents a practical development of an ERG for residential buildings.
Resumo:
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.
Neural network controller for active demand side management with PV energy in the residential sector
Resumo:
In this paper, we describe the development of a control system for Demand-Side Management in the residential sector with Distributed Generation. The electrical system under study incorporates local PV energy generation, an electricity storage system, connection to the grid and a home automation system. The distributed control system is composed of two modules: a scheduler and a coordinator, both implemented with neural networks. The control system enhances the local energy performance, scheduling the tasks demanded by the user and maximizing the use of local generation.
Resumo:
Applying foresight tools to determine future demand requirements on tourist destinations
Resumo:
La demanda de contenidos de vídeo ha aumentado rápidamente en los últimos años como resultado del gran despliegue de la TV sobre IP (IPTV) y la variedad de servicios ofrecidos por los operadores de red. Uno de los servicios que se ha vuelto especialmente atractivo para los clientes es el vídeo bajo demanda (VoD) en tiempo real, ya que ofrece una transmisión (streaming) inmediata de gran variedad de contenidos de vídeo. El precio que los operadores tienen que pagar por este servicio es el aumento del tráfico en las redes, que están cada vez más congestionadas debido a la mayor demanda de contenidos de VoD y al aumento de la calidad de los propios contenidos de vídeo. Así, uno de los principales objetivos de esta tesis es encontrar soluciones que reduzcan el tráfico en el núcleo de la red, manteniendo la calidad del servicio en el nivel adecuado y reduciendo el coste del tráfico. La tesis propone un sistema jerárquico de servidores de streaming en el que se ejecuta un algoritmo para la ubicación óptima de los contenidos de acuerdo con el comportamiento de los usuarios y el estado de la red. Debido a que cualquier algoritmo óptimo de distribución de contenidos alcanza un límite en el que no se puede llegar a nuevas mejoras, la inclusión de los propios clientes del servicio (los peers) en el proceso de streaming puede reducir aún más el tráfico de red. Este proceso se logra aprovechando el control que el operador tiene en las redes de gestión privada sobre los equipos receptores (Set-Top Box) ubicados en las instalaciones de los clientes. El operador se reserva cierta capacidad de almacenamiento y streaming de los peers para almacenar los contenidos de vídeo y para transmitirlos a otros clientes con el fin de aliviar a los servidores de streaming. Debido a la incapacidad de los peers para sustituir completamente a los servidores de streaming, la tesis propone un sistema de streaming asistido por peers. Algunas de las cuestiones importantes que se abordan en la tesis son saber cómo los parámetros del sistema y las distintas distribuciones de los contenidos de vídeo en los peers afectan al rendimiento general del sistema. Para dar respuesta a estas preguntas, la tesis propone un modelo estocástico preciso y flexible que tiene en cuenta parámetros como las capacidades de enlace de subida y de almacenamiento de los peers, el número de peers, el tamaño de la biblioteca de contenidos de vídeo, el tamaño de los contenidos y el esquema de distribución de contenidos para estimar los beneficios del streaming asistido por los peers. El trabajo también propone una versión extendida del modelo matemático mediante la inclusión de la probabilidad de fallo de los peers y su tiempo de recuperación en el conjunto de parámetros del modelo. Estos modelos se utilizan como una herramienta para la realización de exhaustivos análisis del sistema de streaming de VoD asistido por los peers para la amplia gama de parámetros definidos en los modelos. Abstract The demand of video contents has rapidly increased in the past years as a result of the wide deployment of IPTV and the variety of services offered by the network operators. One of the services that has especially become attractive to the customers is real-time Video on Demand (VoD) because it offers an immediate streaming of a large variety of video contents. The price that the operators have to pay for this convenience is the increased traffic in the networks, which are becoming more congested due to the higher demand for VoD contents and the increased quality of the videos. Therefore, one of the main objectives of this thesis is finding solutions that would reduce the traffic in the core of the network, keeping the quality of service on satisfactory level and reducing the traffic cost. The thesis proposes a system of hierarchical structure of streaming servers that runs an algorithm for optimal placement of the contents according to the users’ behavior and the state of the network. Since any algorithm for optimal content distribution reaches a limit upon which no further improvements can be made, including service customers themselves (the peers) in the streaming process can further reduce the network traffic. This process is achieved by taking advantage of the control that the operator has in the privately managed networks over the Set-Top Boxes placed at the clients’ premises. The operator reserves certain storage and streaming capacity on the peers to store the video contents and to stream them to the other clients in order to alleviate the streaming servers. Because of the inability of the peers to completely substitute the streaming servers, the thesis proposes a system for peer-assisted streaming. Some of the important questions addressed in the thesis are how the system parameters and the various distributions of the video contents on the peers would impact the overall system performance. In order to give answers to these questions, the thesis proposes a precise and flexible stochastic model that takes into consideration parameters like uplink and storage capacity of the peers, number of peers, size of the video content library, size of contents and content distribution scheme to estimate the benefits of the peer-assisted streaming. The work also proposes an extended version of the mathematical model by including the failure probability of the peers and their recovery time in the set of parameters. These models are used as tools for conducting thorough analyses of the peer-assisted system for VoD streaming for the wide range of defined parameters.
Resumo:
This paper focuses on the railway rolling stock circulation problem in rapid transit networks where the known demand and train schedule must be met by a given fleet. In rapid transit networks the frequencies are high and distances are relatively short. Although the distances are not very large, service times are high due to the large number of intermediate stops required to allow proper passenger flow. The previous circumstances and the reduced capacity of the depot stations and that the rolling stock is shared between the different lines, force the introduction of empty trains and a careful control on shunting operation. In practice the future demand is generally unknown and the decisions must be based on uncertain forecast. We have developed a stochastic rolling stock formulation of the problem. The computational experiments were developed using a commercial line of the Madrid suburban rail network operated by RENFE (The main Spanish operator of suburban trains of passengers). Comparing the results obtained by deterministic scenarios and stochastic approach some useful conclusions may be obtained.
Resumo:
The concept of cognitive reserve (CR) describes the mind’s resistance to the progressive damage of the brain and probably this can be reflected as the ability to recruit brain networks in an effective way. It is as- sociated with the abilityto copewith the deleterious effects of brain damage,brain degeneration, or age-related changes on cognitive performance.
Resumo:
With recent technological developments within the field of power conditioning and the progressive decrease of incentives for PV electricity in grid-connected markets, new operation modes for PV systems should be explored beyond the traditional maximization of PV electri city feed-in. An example can be found in the domestic sector, where the use of modern PV hybrid systems combin ed with efficient electrical appliances and demand side management strategies can significantly enhance the PV value for the user. This paper presents an active demand side management system able to displace the consumer’s load curve in response to local (PV hybrid system, user) and external conditions (external grid). In this way, th e consumer becomes an “active consumer” that can also cooperate with others and the grid, increasing even more the PV value for the electrical system.
Resumo:
Esta Tesis aborda los problemas de eficiencia de las redes eléctrica desde el punto de vista del consumo. En particular, dicha eficiencia es mejorada mediante el suavizado de la curva de consumo agregado. Este objetivo de suavizado de consumo implica dos grandes mejoras en el uso de las redes eléctricas: i) a corto plazo, un mejor uso de la infraestructura existente y ii) a largo plazo, la reducción de la infraestructura necesaria para suplir las mismas necesidades energéticas. Además, esta Tesis se enfrenta a un nuevo paradigma energético, donde la presencia de generación distribuida está muy extendida en las redes eléctricas, en particular, la generación fotovoltaica (FV). Este tipo de fuente energética afecta al funcionamiento de la red, incrementando su variabilidad. Esto implica que altas tasas de penetración de electricidad de origen fotovoltaico es perjudicial para la estabilidad de la red eléctrica. Esta Tesis trata de suavizar la curva de consumo agregado considerando esta fuente energética. Por lo tanto, no sólo se mejora la eficiencia de la red eléctrica, sino que también puede ser aumentada la penetración de electricidad de origen fotovoltaico en la red. Esta propuesta conlleva grandes beneficios en los campos económicos, social y ambiental. Las acciones que influyen en el modo en que los consumidores hacen uso de la electricidad con el objetivo producir un ahorro energético o un aumento de eficiencia son llamadas Gestión de la Demanda Eléctrica (GDE). Esta Tesis propone dos algoritmos de GDE diferentes para cumplir con el objetivo de suavizado de la curva de consumo agregado. La diferencia entre ambos algoritmos de GDE reside en el marco en el cual estos tienen lugar: el marco local y el marco de red. Dependiendo de este marco de GDE, el objetivo energético y la forma en la que se alcanza este objetivo son diferentes. En el marco local, el algoritmo de GDE sólo usa información local. Este no tiene en cuenta a otros consumidores o a la curva de consumo agregado de la red eléctrica. Aunque esta afirmación pueda diferir de la definición general de GDE, esta vuelve a tomar sentido en instalaciones locales equipadas con Recursos Energéticos Distribuidos (REDs). En este caso, la GDE está enfocada en la maximización del uso de la energía local, reduciéndose la dependencia con la red. El algoritmo de GDE propuesto mejora significativamente el auto-consumo del generador FV local. Experimentos simulados y reales muestran que el auto-consumo es una importante estrategia de gestión energética, reduciendo el transporte de electricidad y alentando al usuario a controlar su comportamiento energético. Sin embargo, a pesar de todas las ventajas del aumento de auto-consumo, éstas no contribuyen al suavizado del consumo agregado. Se han estudiado los efectos de las instalaciones locales en la red eléctrica cuando el algoritmo de GDE está enfocado en el aumento del auto-consumo. Este enfoque puede tener efectos no deseados, incrementando la variabilidad en el consumo agregado en vez de reducirlo. Este efecto se produce porque el algoritmo de GDE sólo considera variables locales en el marco local. Los resultados sugieren que se requiere una coordinación entre las instalaciones. A través de esta coordinación, el consumo debe ser modificado teniendo en cuenta otros elementos de la red y buscando el suavizado del consumo agregado. En el marco de la red, el algoritmo de GDE tiene en cuenta tanto información local como de la red eléctrica. En esta Tesis se ha desarrollado un algoritmo autoorganizado para controlar el consumo de la red eléctrica de manera distribuida. El objetivo de este algoritmo es el suavizado del consumo agregado, como en las implementaciones clásicas de GDE. El enfoque distribuido significa que la GDE se realiza desde el lado de los consumidores sin seguir órdenes directas emitidas por una entidad central. Por lo tanto, esta Tesis propone una estructura de gestión paralela en lugar de una jerárquica como en las redes eléctricas clásicas. Esto implica que se requiere un mecanismo de coordinación entre instalaciones. Esta Tesis pretende minimizar la cantidad de información necesaria para esta coordinación. Para lograr este objetivo, se han utilizado dos técnicas de coordinación colectiva: osciladores acoplados e inteligencia de enjambre. La combinación de estas técnicas para llevar a cabo la coordinación de un sistema con las características de la red eléctrica es en sí mismo un enfoque novedoso. Por lo tanto, este objetivo de coordinación no es sólo una contribución en el campo de la gestión energética, sino también en el campo de los sistemas colectivos. Los resultados muestran que el algoritmo de GDE propuesto reduce la diferencia entre máximos y mínimos de la red eléctrica en proporción a la cantidad de energía controlada por el algoritmo. Por lo tanto, conforme mayor es la cantidad de energía controlada por el algoritmo, mayor es la mejora de eficiencia en la red eléctrica. Además de las ventajas resultantes del suavizado del consumo agregado, otras ventajas surgen de la solución distribuida seguida en esta Tesis. Estas ventajas se resumen en las siguientes características del algoritmo de GDE propuesto: • Robustez: en un sistema centralizado, un fallo o rotura del nodo central provoca un mal funcionamiento de todo el sistema. La gestión de una red desde un punto de vista distribuido implica que no existe un nodo de control central. Un fallo en cualquier instalación no afecta el funcionamiento global de la red. • Privacidad de datos: el uso de una topología distribuida causa de que no hay un nodo central con información sensible de todos los consumidores. Esta Tesis va más allá y el algoritmo propuesto de GDE no utiliza información específica acerca de los comportamientos de los consumidores, siendo la coordinación entre las instalaciones completamente anónimos. • Escalabilidad: el algoritmo propuesto de GDE opera con cualquier número de instalaciones. Esto implica que se permite la incorporación de nuevas instalaciones sin afectar a su funcionamiento. • Bajo coste: el algoritmo de GDE propuesto se adapta a las redes actuales sin requisitos topológicos. Además, todas las instalaciones calculan su propia gestión con un bajo requerimiento computacional. Por lo tanto, no se requiere un nodo central con un alto poder de cómputo. • Rápido despliegue: las características de escalabilidad y bajo coste de los algoritmos de GDE propuestos permiten una implementación rápida. No se requiere una planificación compleja para el despliegue de este sistema. ABSTRACT This Thesis addresses the efficiency problems of the electrical grids from the consumption point of view. In particular, such efficiency is improved by means of the aggregated consumption smoothing. This objective of consumption smoothing entails two major improvements in the use of electrical grids: i) in the short term, a better use of the existing infrastructure and ii) in long term, the reduction of the required infrastructure to supply the same energy needs. In addition, this Thesis faces a new energy paradigm, where the presence of distributed generation is widespread over the electrical grids, in particular, the Photovoltaic (PV) generation. This kind of energy source affects to the operation of the grid by increasing its variability. This implies that a high penetration rate of photovoltaic electricity is pernicious for the electrical grid stability. This Thesis seeks to smooth the aggregated consumption considering this energy source. Therefore, not only the efficiency of the electrical grid is improved, but also the penetration of photovoltaic electricity into the grid can be increased. This proposal brings great benefits in the economic, social and environmental fields. The actions that influence the way that consumers use electricity in order to achieve energy savings or higher efficiency in energy use are called Demand-Side Management (DSM). This Thesis proposes two different DSM algorithms to meet the aggregated consumption smoothing objective. The difference between both DSM algorithms lie in the framework in which they take place: the local framework and the grid framework. Depending on the DSM framework, the energy goal and the procedure to reach this goal are different. In the local framework, the DSM algorithm only uses local information. It does not take into account other consumers or the aggregated consumption of the electrical grid. Although this statement may differ from the general definition of DSM, it makes sense in local facilities equipped with Distributed Energy Resources (DERs). In this case, the DSM is focused on the maximization of the local energy use, reducing the grid dependence. The proposed DSM algorithm significantly improves the self-consumption of the local PV generator. Simulated and real experiments show that self-consumption serves as an important energy management strategy, reducing the electricity transport and encouraging the user to control his energy behavior. However, despite all the advantages of the self-consumption increase, they do not contribute to the smooth of the aggregated consumption. The effects of the local facilities on the electrical grid are studied when the DSM algorithm is focused on self-consumption maximization. This approach may have undesirable effects, increasing the variability in the aggregated consumption instead of reducing it. This effect occurs because the algorithm only considers local variables in the local framework. The results suggest that coordination between these facilities is required. Through this coordination, the consumption should be modified by taking into account other elements of the grid and seeking for an aggregated consumption smoothing. In the grid framework, the DSM algorithm takes into account both local and grid information. This Thesis develops a self-organized algorithm to manage the consumption of an electrical grid in a distributed way. The goal of this algorithm is the aggregated consumption smoothing, as the classical DSM implementations. The distributed approach means that the DSM is performed from the consumers side without following direct commands issued by a central entity. Therefore, this Thesis proposes a parallel management structure rather than a hierarchical one as in the classical electrical grids. This implies that a coordination mechanism between facilities is required. This Thesis seeks for minimizing the amount of information necessary for this coordination. To achieve this objective, two collective coordination techniques have been used: coupled oscillators and swarm intelligence. The combination of these techniques to perform the coordination of a system with the characteristics of the electric grid is itself a novel approach. Therefore, this coordination objective is not only a contribution in the energy management field, but in the collective systems too. Results show that the proposed DSM algorithm reduces the difference between the maximums and minimums of the electrical grid proportionally to the amount of energy controlled by the system. Thus, the greater the amount of energy controlled by the algorithm, the greater the improvement of the efficiency of the electrical grid. In addition to the advantages resulting from the smoothing of the aggregated consumption, other advantages arise from the distributed approach followed in this Thesis. These advantages are summarized in the following features of the proposed DSM algorithm: • Robustness: in a centralized system, a failure or breakage of the central node causes a malfunction of the whole system. The management of a grid from a distributed point of view implies that there is not a central control node. A failure in any facility does not affect the overall operation of the grid. • Data privacy: the use of a distributed topology causes that there is not a central node with sensitive information of all consumers. This Thesis goes a step further and the proposed DSM algorithm does not use specific information about the consumer behaviors, being the coordination between facilities completely anonymous. • Scalability: the proposed DSM algorithm operates with any number of facilities. This implies that it allows the incorporation of new facilities without affecting its operation. • Low cost: the proposed DSM algorithm adapts to the current grids without any topological requirements. In addition, every facility calculates its own management with low computational requirements. Thus, a central computational node with a high computational power is not required. • Quick deployment: the scalability and low cost features of the proposed DSM algorithms allow a quick deployment. A complex schedule of the deployment of this system is not required.
Resumo:
The proportion of elderly people in the population has increased rapidly in the last century and consequently "healthy aging" is expected to become a critical area of research in neuroscience. Evidence reveals how healthy aging depends on three main behavioral factors: social lifestyle, cognitive activity and physical activity. In this study, we focused on the role of cognitive activity, concentrating specifically on educational and occupational attainment factors, which were considered two of the main pillars of cognitive reserve. 21 subjects with similar rates of social lifestyle, physical and cognitive activity were selected from a sample of 55 healthy adults. These subjects were divided into two groups according to their level of cognitive reserve; one group comprised subjects with high cognitive reserve (9 members) and the other contained those with low cognitive reserve (12 members). To evaluate the cortical brain connectivity network, all participants were recorded by Magnetoencephalography (MEG) while they performed a memory task (modified version of the Sternberg¿s Task). We then applied two algorithms (Phase Locking Value & Phase-Lag Index) to study the dynamics of functional connectivity. In response to the same task, the subjects with lower cognitive reserve presented higher functional connectivity than those with higher cognitive reserve. These results may indicate that participants with low cognitive reserve needed a greater 'effort' than those with high cognitive reserve to achieve the same level of cognitive performance. Therefore, we conclude that cognitive reserve contributes to the modulation of the functional connectivity patterns of the aging brain.
Resumo:
This paper focuses on the design of railway timetables considering a variable elastic demand profile along a whole design day. Timetabling is the third stage in the classical hierarchical railway planning process. Most of previous works on this topic consider a uniform demand behavior for short planning intervals. In this paper, we propose a MINLP model for designing non-periodic timetables on a railway corridor where demand is dependent on waiting times. In the elastic demand case, long waiting times lead to a loss of passengers, who may select an alternative transportation mode. The mode choice is modeled using two alternative methods. The first one is based on a sigmoid function and can be used in case of absence of information for competitor modes. In the second one, the mode choice probability is obtained using a Logit model that explicitly considers the existence of a main alternative mode. With the purpose of obtaining optimal departure times, in both cases, a minimization of the loss of passengers is used as objective function. Finally, as illustration, the timetabling MINLP model with both mode choice methods is applied to a real case and computational results are shown.
Resumo:
In order to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. Transport modelling literature has been increasingly aware that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users’ social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced; but links between international and Spanish perspectives are rarely dealt with. The overall objective of the thesis is to develop a stepped methodology that integrate diverse perspectives to evaluate the willingness to change patterns of urban mobility in Madrid, based on four steps: (1st) analysis of causal relationships between both objective and subjective personal variables, and travel behavior to capture pro-car and pro-public transport intentions; (2nd) exploring the potential influence of individual trip characteristics and social influence variables on transport mode choice; (3rd) identifying built environment dimensions on travel behavior; and (4th) exploring the potential influence on transport mode choice of extrinsic characteristics of individual trip using panel data, land use variables using spatial characteristics and social influence variables. The data used for this thesis have been collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) carried out in Madrid. Although the steps above are mainly methodological, the application to the area of Madrid allows deriving important results that can be directly used to forecast travel demand and to evaluate the benefits of specific policies that might be implemented in the area. The results demonstrated, respectively: (1st) transport policy actions are more likely to be effective when pro-car intention has been disrupted first; (2nd) the consideration of “helped” and “voluntary” users as tested here could have a positive and negative impact, respectively, on the use of public transport; (3rd) the importance of density, design, diversity and accessibility underlying dimensions responsible for land use variables; and (4th) there are clearly different types of combinations of social interactions, land use and time frame on travel behavior studies. Finally, with the objective to study the impact of demand measures to change urban mobility behavior, those previous results have been considered in a unique way, a hybrid discrete choice model has been used on a 5th step. Then it can be concluded that urban mobility behavior is not only ruled by the maximum utility criterion, but also by a strong psychological-environment concept, developed without the mediation of cognitive processes during choice, i.e., many people using public transport on their way to work do not do it for utilitarian reasons, but because no other choice is available. Regarding built environment dimensions, the more diversity place of residence, the more difficult the use of public transport or walking.