5 resultados para research chemical

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Around ten years ago investigation of technical and material construction in Ancient Roma has advanced in favour to obtain positive results. This process has been directed to obtaining some dates based in chemical composition, also action and reaction of materials against meteorological assaults or post depositional displacements. Plenty of these dates should be interpreted as a result of deterioration and damage in concrete material made in one landscape with some kind of meteorological characteristics. Concrete mixture like calcium and gypsum mortars should be analysed in laboratory test programs, and not only with descriptions based in reference books of Strabo, Pliny the Elder or Vitruvius. Roman manufacture was determined by weather condition, landscape, natural resources and of course, economic situation of the owner. In any case we must research the work in every facts of construction. On the one hand, thanks to chemical techniques like X-ray diffraction and Optical microscopy, we could know the granular disposition of mixture. On the other hand if we develop physical and mechanical techniques like compressive strength, capillary absorption on contact or water behaviour, we could know the reactions in binder and aggregates against weather effects. However we must be capable of interpret these results. Last year many analyses developed in archaeological sites in Spain has contributed to obtain different point of view, so has provide new dates to manage one method to continue the investigation of roman mortars. If we developed chemical and physical analysis in roman mortars at the same time, and we are capable to interpret the construction and the resources used, we achieve to understand the process of construction, the date and also the way of restoration in future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La nanotecnología es un área de investigación de reciente creación que trata con la manipulación y el control de la materia con dimensiones comprendidas entre 1 y 100 nanómetros. A escala nanométrica, los materiales exhiben fenómenos físicos, químicos y biológicos singulares, muy distintos a los que manifiestan a escala convencional. En medicina, los compuestos miniaturizados a nanoescala y los materiales nanoestructurados ofrecen una mayor eficacia con respecto a las formulaciones químicas tradicionales, así como una mejora en la focalización del medicamento hacia la diana terapéutica, revelando así nuevas propiedades diagnósticas y terapéuticas. A su vez, la complejidad de la información a nivel nano es mucho mayor que en los niveles biológicos convencionales (desde el nivel de población hasta el nivel de célula) y, por tanto, cualquier flujo de trabajo en nanomedicina requiere, de forma inherente, estrategias de gestión de información avanzadas. Desafortunadamente, la informática biomédica todavía no ha proporcionado el marco de trabajo que permita lidiar con estos retos de la información a nivel nano, ni ha adaptado sus métodos y herramientas a este nuevo campo de investigación. En este contexto, la nueva área de la nanoinformática pretende detectar y establecer los vínculos existentes entre la medicina, la nanotecnología y la informática, fomentando así la aplicación de métodos computacionales para resolver las cuestiones y problemas que surgen con la información en la amplia intersección entre la biomedicina y la nanotecnología. Las observaciones expuestas previamente determinan el contexto de esta tesis doctoral, la cual se centra en analizar el dominio de la nanomedicina en profundidad, así como en el desarrollo de estrategias y herramientas para establecer correspondencias entre las distintas disciplinas, fuentes de datos, recursos computacionales y técnicas orientadas a la extracción de información y la minería de textos, con el objetivo final de hacer uso de los datos nanomédicos disponibles. El autor analiza, a través de casos reales, alguna de las tareas de investigación en nanomedicina que requieren o que pueden beneficiarse del uso de métodos y herramientas nanoinformáticas, ilustrando de esta forma los inconvenientes y limitaciones actuales de los enfoques de informática biomédica a la hora de tratar con datos pertenecientes al dominio nanomédico. Se discuten tres escenarios diferentes como ejemplos de actividades que los investigadores realizan mientras llevan a cabo su investigación, comparando los contextos biomédico y nanomédico: i) búsqueda en la Web de fuentes de datos y recursos computacionales que den soporte a su investigación; ii) búsqueda en la literatura científica de resultados experimentales y publicaciones relacionadas con su investigación; iii) búsqueda en registros de ensayos clínicos de resultados clínicos relacionados con su investigación. El desarrollo de estas actividades requiere el uso de herramientas y servicios informáticos, como exploradores Web, bases de datos de referencias bibliográficas indexando la literatura biomédica y registros online de ensayos clínicos, respectivamente. Para cada escenario, este documento proporciona un análisis detallado de los posibles obstáculos que pueden dificultar el desarrollo y el resultado de las diferentes tareas de investigación en cada uno de los dos campos citados (biomedicina y nanomedicina), poniendo especial énfasis en los retos existentes en la investigación nanomédica, campo en el que se han detectado las mayores dificultades. El autor ilustra cómo la aplicación de metodologías provenientes de la informática biomédica a estos escenarios resulta efectiva en el dominio biomédico, mientras que dichas metodologías presentan serias limitaciones cuando son aplicadas al contexto nanomédico. Para abordar dichas limitaciones, el autor propone un enfoque nanoinformático, original, diseñado específicamente para tratar con las características especiales que la información presenta a nivel nano. El enfoque consiste en un análisis en profundidad de la literatura científica y de los registros de ensayos clínicos disponibles para extraer información relevante sobre experimentos y resultados en nanomedicina —patrones textuales, vocabulario en común, descriptores de experimentos, parámetros de caracterización, etc.—, seguido del desarrollo de mecanismos para estructurar y analizar dicha información automáticamente. Este análisis concluye con la generación de un modelo de datos de referencia (gold standard) —un conjunto de datos de entrenamiento y de test anotados manualmente—, el cual ha sido aplicado a la clasificación de registros de ensayos clínicos, permitiendo distinguir automáticamente los estudios centrados en nanodrogas y nanodispositivos de aquellos enfocados a testear productos farmacéuticos tradicionales. El presente trabajo pretende proporcionar los métodos necesarios para organizar, depurar, filtrar y validar parte de los datos nanomédicos existentes en la actualidad a una escala adecuada para la toma de decisiones. Análisis similares para otras tareas de investigación en nanomedicina ayudarían a detectar qué recursos nanoinformáticos se requieren para cumplir los objetivos actuales en el área, así como a generar conjunto de datos de referencia, estructurados y densos en información, a partir de literatura y otros fuentes no estructuradas para poder aplicar nuevos algoritmos e inferir nueva información de valor para la investigación en nanomedicina. ABSTRACT Nanotechnology is a research area of recent development that deals with the manipulation and control of matter with dimensions ranging from 1 to 100 nanometers. At the nanoscale, materials exhibit singular physical, chemical and biological phenomena, very different from those manifested at the conventional scale. In medicine, nanosized compounds and nanostructured materials offer improved drug targeting and efficacy with respect to traditional formulations, and reveal novel diagnostic and therapeutic properties. Nevertheless, the complexity of information at the nano level is much higher than the complexity at the conventional biological levels (from populations to the cell). Thus, any nanomedical research workflow inherently demands advanced information management. Unfortunately, Biomedical Informatics (BMI) has not yet provided the necessary framework to deal with such information challenges, nor adapted its methods and tools to the new research field. In this context, the novel area of nanoinformatics aims to build new bridges between medicine, nanotechnology and informatics, allowing the application of computational methods to solve informational issues at the wide intersection between biomedicine and nanotechnology. The above observations determine the context of this doctoral dissertation, which is focused on analyzing the nanomedical domain in-depth, and developing nanoinformatics strategies and tools to map across disciplines, data sources, computational resources, and information extraction and text mining techniques, for leveraging available nanomedical data. The author analyzes, through real-life case studies, some research tasks in nanomedicine that would require or could benefit from the use of nanoinformatics methods and tools, illustrating present drawbacks and limitations of BMI approaches to deal with data belonging to the nanomedical domain. Three different scenarios, comparing both the biomedical and nanomedical contexts, are discussed as examples of activities that researchers would perform while conducting their research: i) searching over the Web for data sources and computational resources supporting their research; ii) searching the literature for experimental results and publications related to their research, and iii) searching clinical trial registries for clinical results related to their research. The development of these activities will depend on the use of informatics tools and services, such as web browsers, databases of citations and abstracts indexing the biomedical literature, and web-based clinical trial registries, respectively. For each scenario, this document provides a detailed analysis of the potential information barriers that could hamper the successful development of the different research tasks in both fields (biomedicine and nanomedicine), emphasizing the existing challenges for nanomedical research —where the major barriers have been found. The author illustrates how the application of BMI methodologies to these scenarios can be proven successful in the biomedical domain, whilst these methodologies present severe limitations when applied to the nanomedical context. To address such limitations, the author proposes an original nanoinformatics approach specifically designed to deal with the special characteristics of information at the nano level. This approach consists of an in-depth analysis of the scientific literature and available clinical trial registries to extract relevant information about experiments and results in nanomedicine —textual patterns, common vocabulary, experiment descriptors, characterization parameters, etc.—, followed by the development of mechanisms to automatically structure and analyze this information. This analysis resulted in the generation of a gold standard —a manually annotated training or reference set—, which was applied to the automatic classification of clinical trial summaries, distinguishing studies focused on nanodrugs and nanodevices from those aimed at testing traditional pharmaceuticals. The present work aims to provide the necessary methods for organizing, curating and validating existing nanomedical data on a scale suitable for decision-making. Similar analysis for different nanomedical research tasks would help to detect which nanoinformatics resources are required to meet current goals in the field, as well as to generate densely populated and machine-interpretable reference datasets from the literature and other unstructured sources for further testing novel algorithms and inferring new valuable information for nanomedicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta Tesis Doctoral se centra en la investigación del proceso de producción de polisilicio para aplicaciones fotovoltaicas (FV) por la vía química; mediante procesos de depósito en fase vapor (CVD). El polisilicio para la industria FV recibe el nombre de silicio de grado solar (SoG Si). Por un lado, el proceso que domina hoy en día la producción de SoG Si está basado en la síntesis, destilación y descomposición de triclorosilano (TCS) en un reactor CVD -denominado reactor Siemens-. El material obtenido mediante este proceso es de muy alta pureza, pero a costa de un elevado consumo energético. Así, para alcanzar los dos principales objetivos de la industria FV basada en silicio, bajos costes de producción y bajo tiempo de retorno de la energía invertida en su fabricación, es esencial disminuir el consumo energético de los reactores Siemens. Por otro lado, una alternativa al proceso Siemens considera la descomposición de monosilano (MS) en un reactor de lecho fluidizado (FBR). Este proceso alternativo tiene un consumo energético mucho menor que el de un reactor Siemens, si bien la calidad del material resultante es también menor; pero ésta puede ser suficiente para la industria FV. A día de hoy los FBR deben aún abordar una serie de retos para que su menor consumo energético sea una ventaja suficiente comparada con otras desventajas de estos reactores. En resumen, la investigación desarrollada se centra en el proceso de depósito de polysilicio por CVD a partir de TCS -reactor Siemens-; pero también se investiga el proceso de producción de SoG Si en los FBR exponiendo las fortalezas y debilidades de esta alternativa. Para poder profundizar en el conocimiento del proceso CVD para la producción de polisilicio es clave el conocimiento de las reacciones químicas fundamentales y cómo éstas influencian la calidad del producto resultante, al mismo tiempo que comprender los fenómenos responsables del consumo energético. Por medio de un reactor Siemens de laboratorio en el que se llevan a cabo un elevado número de experimentos de depósito de polisilicio de forma satisfactoria se adquiere el conocimiento previamente descrito. Se pone de manifiesto la complejidad de los reactores CVD y de los problemas asociados a la pérdidas de calor de estos procesos. Se identifican las contribuciones a las pérdidas de calor de los reactores CVD, éstas pérdidas de calor son debidas principalmente a los fenómenos de radiación y, conducción y convección vía gases. En el caso de los reactores Siemens el fenómeno que contribuye en mayor medida al alto consumo energético son las pérdidas de calor por radiación, mientras que en los FBRs tanto la radiación como el calor transferido por transporte másico contribuyen de forma importante. Se desarrolla un modelo teórico integral para el cálculo de las pérdidas de calor en reactores Siemens. Este modelo está formado a su vez por un modelo para la evaluación de las pérdidas de calor por radiación y modelos para la evaluación de las pérdidas de calor por conducción y convección vía gases. Se ponen de manifiesto una serie de limitaciones del modelo de pérdidas de calor por radiación, y se desarrollan una serie de modificaciones que mejoran el modelo previo. El modelo integral se valida por medio un reactor Siemens de laboratorio, y una vez validado se presenta su extrapolación a la escala industrial. El proceso de conversión de TCS y MS a polisilicio se investiga mediante modelos de fluidodinámica computacional (CFD). Se desarrollan modelados CFD para un reactor Siemens de laboratorio y para un prototipo FBR. Los resultados obtenidos mediante simulación son comparados, en ambos casos, con resultados experimentales. Los modelos desarrollados se convierten en herramientas para la identificación de aquellos parámetros que tienen mayor influencia en los procesos CVD. En el caso del reactor Siemens, ambos modelos -el modelo integral y el modelado CFD permiten el estudio de los parámetros que afectan en mayor medida al elevado consumo energético, y mediante su análisis se sugieren modificaciones para este tipo de reactores que se traducirían en un menor número de kilovatios-hora consumidos por kilogramo de silicio producido. Para el caso del FBR, el modelado CFD permite analizar el efecto de una serie de parámetros sobre la distribución de temperaturas en el lecho fluidizado; y dicha distribución de temperaturas está directamente relacionada con los principales retos de este tipo de reactores. Por último, existen nuevos conceptos de depósito de polisilicio; éstos se aprovechan de la ventaja teórica de un mayor volumen depositado por unidad de tiempo -cuando una mayor superficie de depósito está disponible- con el objetivo de reducir la energía consumida por los reactores Siemens. Estos conceptos se exploran mediante cálculos teóricos y pruebas en el reactor Siemens de laboratorio. ABSTRACT This Doctoral Thesis comprises research on polysilicon production for photovoltaic (PV) applications through the chemical route: chemical vapor deposition (CVD) process. PV polysilicon is named solar grade silicon (SoG Si). On the one hand, the besetting CVD process for SoG Si production is based on the synthesis, distillation, and decomposition of thriclorosilane (TCS) in the so called Siemens reactor; high purity silicon is obtained at the expense of high energy consumption. Thus, lowering the energy consumption of the Siemens process is essential to achieve the two wider objectives for silicon-based PV technology: low production cost and low energy payback time. On the other hand, a valuable variation of this process considers the use of monosilane (MS) in a fluidized bed reactor (FBR); lower output material quality is obtained but it may fulfil the requirements for the PV industry. FBRs demand lower energy consumption than Siemens reactors but further research is necessary to address the actual challenges of these reactors. In short, this work is centered in polysilicon CVD process from TCS -Siemens reactor-; but it also offers insights on the strengths and weaknesses of the FBR for SoG Si production. In order to aid further development in polysilicon CVD is key the understanding of the fundamental reactions and how they influence the product quality, at the same time as to comprehend the phenomena responsible for the energy consumption. Experiments conducted in a laboratory Siemens reactor prove the satisfactory operation of the prototype reactor, and allow to acquire the knowledge that has been described. Complexity of the CVD reactors is stated and the heat loss problem associated with polysilicon CVD is addressed. All contributions to the energy consumption of Siemens reactors and FBRs are put forward; these phenomena are radiation and, conduction and convection via gases heat loss. In a Siemens reactor the major contributor to the energy consumption is radiation heat loss; in case of FBRs radiation and heat transfer due to mass transport are both important contributors. Theoretical models for radiation, conduction and convection heat loss in a Siemens reactor are developed; shaping a comprehensive theoretical model for heat loss in Siemens reactors. Limitations of the radiation heat loss model are put forward, and a novel contribution to the existing model is developed. The comprehensive model for heat loss is validated through a laboratory Siemens reactor, and results are scaled to industrial reactors. The process of conversion of TCS and MS gases to solid polysilicon is investigated by means of computational fluid-dynamics models. CFD models for a laboratory Siemens reactor and a FBR prototype are developed. Simulated results for both CVD prototypes are compared with experimental data. The developed models are used as a tool to investigate the parameters that more strongly influence both processes. For the Siemens reactors, both, the comprehensive theoretical model and the CFD model allow to identify the parameters responsible for the great power consumption, and thus, suggest some modifications that could decrease the ratio kilowatts-hour per kilogram of silicon produced. For the FBR, the CFD model allows to explore the effect of a number of parameters on the thermal distribution of the fluidized bed; that is the main actual challenge of these type of reactors. Finally, there exist new deposition surface concepts that take advantage of higher volume deposited per time unit -when higher deposition area is available- trying to reduce the high energy consumption of the Siemens reactors. These novel concepts are explored by means of theoretical calculations and tests in the laboratory Siemens prototype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ca-amendments are routinely applied to improve acid soils, whilst no-tillage (NT) has been widely recommended in soils where traditional tillage (TT) has led to losses of organic matter. However, the potential interactions between the two treatments are only partially known. Our study was conducted on an annual forage crop agrosystem with a degraded Palexerult soil located in SW Spain, in order to assess if the combination of NT plus a Ca-amendment provides additional benefits to those of their separate use. To this end we analysed the effects of four different combinations of tillage and Ca-amendment on selected key soil properties, focusing on their relationships. The experimental design was a split-plot with four replicates. The main factor was tillage (NT versus TT) and the second factor was the application or not of a Ca-amendment, consisting of a mixture of sugar foam (SF) and red gypsum (RG). Soil samples were collected from 3 soil layers down to 50 cm after four years of treatment (2009). The use of the Ca-amendment improved pH and Al-toxicity down to 25 cm and increased exchangeable Ca2+ down to 50 cm, even under NT due to the combined effect of SF and RG. Both NT and the Ca-amendment had a beneficial effect on total organic carbon (TOC), especially on particulate organic carbon (POC), in the 0–5 cm layer, with the highest contents observed when both practices were combined. Unlike NT, the Ca-amendment failed to improve soil aggregation in spite of the carbon supplied. This carbon was not protected within the stable aggregates in the medium term, making it more susceptible to mineralization. We suggest that the fraction of Al extracted by oxalate from solid phase (AlOxa-Cu-K) and the glomalin-related soil proteins (GRSPs) are involved in the accumulation of carbon within water stable aggregates, probably through the formation of non-toxic stable Al-OM compounds, including those formed with GRSPs. NT alone decreased AlK in the 0–5 cm soil layer, possibly by increasing POC, TOC and GRSPs, which were observed to play a role in reducing Al toxicity. From our findings, the combination of NT and Ca-amendment appears to be the best management practice to improve chemical and physical characteristics of acid soils degraded by tillage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industriales Research Meeting 2016 (IRM16) is an event to show the research activities at the School of Industrial Engineering (ETSII) of the Technical University of Madrid (UPM). The main purpose of this event is to present the ongoing research carried out by professors and researchers of the Institutes, Research Centres, Research Groups and Departments of this School, through funded research projects in close collaboration with public and private institutions and companies, some of them from IBEX-35. This book contains the 138 posters presented from different branches of engineering such as: acoustic, aerospace, bioengineering, chemical, electrical, electronics, automation, energy, environmental, management and industrial organization, laser technology and industrial organization, laser technology and applications, materials, mathematics, statistics, mechanics, manufacturing, structures, nuclear technology, seismic, vehicles and railways.