5 resultados para random phase approximation
em Universidad Politécnica de Madrid
Resumo:
Using a new Admittance-based model for electrical noise able to handle Fluctuations and Dissipations of electrical energy, we explain the phase noise of oscillators that use feedback around L-C resonators. We show that Fluctuations produce the Line Broadening of their output spectrum around its mean frequency f0 and that the Pedestal of phase noise far from f0 comes from Dissipations modified by the feedback electronics. The charge noise power 4FkT/R C2/s that disturbs the otherwise periodic fluctuation of charge these oscillators aim to sustain in their L-C-R resonator, is what creates their phase noise proportional to Leeson’s noise figure F and to the charge noise power 4kT/R C2/s of their capacitance C that today’s modelling would consider as the current noise density in A2/Hz of their resistance R. Linked with this (A2/Hz?C2/s) equivalence, R becomes a random series in time of discrete chances to Dissipate energy in Thermal Equilibrium (TE) giving a similar series of discrete Conversions of electrical energy into heat when the resonator is out of TE due to the Signal power it handles. Therefore, phase noise reflects the way oscillators sense thermal exchanges of energy with their environment.
Resumo:
Using a new Admittance-based model for electrical noise able to handle Fluctuations and Dissipations of electrical energy, we explain the phase noise of oscillators that use feedback around L-C resonators. We show that Fluctuations produce the Line Broadening of their output spectrum around its mean frequency f0 and that the Pedestal of phase noise far from f0 comes from Dissipations modified by the feedback electronics. The charge noise power 4FkT/R C2/s that disturbs the otherwise periodic fluctuation of charge these oscillators aim to sustain in their L-C-R resonator, is what creates their phase noise proportional to Leeson’s noise figure F and to the charge noise power 4kT/R C2/s of their capacitance C that today’s modelling would consider as the current noise density in A2/Hz of their resistance R. Linked with this (A2/Hz?C2/s) equivalence, R becomes a random series in time of discrete chances to Dissipate energy in Thermal Equilibrium (TE) giving a similar series of discrete Conversions of electrical energy into heat when the resonator is out of TE due to the Signal power it handles. Therefore, phase noise reflects the way oscillators sense thermal exchanges of energy with their environment
Resumo:
Sampling a network with a given probability distribution has been identified as a useful operation. In this paper we propose distributed algorithms for sampling networks, so that nodes are selected by a special node, called the source, with a given probability distribution. All these algorithms are based on a new class of random walks, that we call Random Centrifugal Walks (RCW). A RCW is a random walk that starts at the source and always moves away from it. Firstly, an algorithm to sample any connected network using RCW is proposed. The algorithm assumes that each node has a weight, so that the sampling process must select a node with a probability proportional to its weight. This algorithm requires a preprocessing phase before the sampling of nodes. In particular, a minimum diameter spanning tree (MDST) is created in the network, and then nodes weights are efficiently aggregated using the tree. The good news are that the preprocessing is done only once, regardless of the number of sources and the number of samples taken from the network. After that, every sample is done with a RCW whose length is bounded by the network diameter. Secondly, RCW algorithms that do not require preprocessing are proposed for grids and networks with regular concentric connectivity, for the case when the probability of selecting a node is a function of its distance to the source. The key features of the RCW algorithms (unlike previous Markovian approaches) are that (1) they do not need to warm-up (stabilize), (2) the sampling always finishes in a number of hops bounded by the network diameter, and (3) it selects a node with the exact probability distribution.
Resumo:
In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discussed
Resumo:
En los últimos años, el Ge ha ganado de nuevo atención con la finalidad de ser integrado en el seno de las existentes tecnologías de microelectrónica. Aunque no se le considera como un canddato capaz de reemplazar completamente al Si en el futuro próximo, probalemente servirá como un excelente complemento para aumentar las propiedades eléctricas en dispositivos futuros, especialmente debido a su alta movilidad de portadores. Esta integración requiere de un avance significativo del estado del arte en los procesos de fabricado. Técnicas de simulación, como los algoritmos de Monte Carlo cinético (KMC), proporcionan un ambiente atractivo para llevar a cabo investigación y desarrollo en este campo, especialmente en términos de costes en tiempo y financiación. En este estudio se han usado, por primera vez, técnicas de KMC con el fin entender el procesado “front-end” de Ge en su fabricación, específicamente la acumulación de dañado y amorfización producidas por implantación iónica y el crecimiento epitaxial en fase sólida (SPER) de las capas amorfizadas. Primero, simulaciones de aproximación de clisiones binarias (BCA) son usadas para calcular el dañado causado por cada ión. La evolución de este dañado en el tiempo se simula usando KMC sin red, o de objetos (OKMC) en el que sólamente se consideran los defectos. El SPER se simula a través de una aproximación KMC de red (LKMC), siendo capaz de seguir la evolución de los átomos de la red que forman la intercara amorfo/cristalina. Con el modelo de amorfización desarrollado a lo largo de este trabajo, implementado en un simulador multi-material, se pueden simular todos estos procesos. Ha sido posible entender la acumulación de dañado, desde la generación de defectos puntuales hasta la formación completa de capas amorfas. Esta acumulación ocurre en tres regímenes bien diferenciados, empezando con un ritmo lento de formación de regiones de dañado, seguido por una rápida relajación local de ciertas áreas en la fase amorfa donde ambas fases, amorfa y cristalina, coexisten, para terminar en la amorfización completa de capas extensas, donde satura el ritmo de acumulación. Dicha transición ocurre cuando la concentración de dañado supera cierto valor límite, el cual es independiente de las condiciones de implantación. Cuando se implantan los iones a temperaturas relativamente altas, el recocido dinámico cura el dañado previamente introducido y se establece una competición entre la generación de dañado y su disolución. Estos efectos se vuelven especialmente importantes para iones ligeros, como el B, el cual crea dañado más diluido, pequeño y distribuido de manera diferente que el causado por la implantación de iones más pesados, como el Ge. Esta descripción reproduce satisfactoriamente la cantidad de dañado y la extensión de las capas amorfas causadas por implantación iónica reportadas en la bibliografía. La velocidad de recristalización de la muestra previamente amorfizada depende fuertemente de la orientación del sustrato. El modelo LKMC presentado ha sido capaz de explicar estas diferencias entre orientaciones a través de un simple modelo, dominado por una única energía de activación y diferentes prefactores en las frecuencias de SPER dependiendo de las configuraciones de vecinos de los átomos que recristalizan. La formación de maclas aparece como una consecuencia de esta descripción, y es predominante en sustratos crecidos en la orientación (111)Ge. Este modelo es capaz de reproducir resultados experimentales para diferentes orientaciones, temperaturas y tiempos de evolución de la intercara amorfo/cristalina reportados por diferentes autores. Las parametrizaciones preliminares realizadas de los tensores de activación de tensiones son también capaces de proveer una buena correlación entre las simulaciones y los resultados experimentales de velocidad de SPER a diferentes temperaturas bajo una presión hidrostática aplicada. Los estudios presentados en esta tesis han ayudado a alcanzar un mejor entendimiento de los mecanismos de producción de dañado, su evolución, amorfización y SPER para Ge, además de servir como una útil herramienta para continuar el trabajo en este campo. In the recent years, Ge has regained attention to be integrated into existing microelectronic technologies. Even though it is not thought to be a feasible full replacement to Si in the near future, it will likely serve as an excellent complement to enhance electrical properties in future devices, specially due to its high carrier mobilities. This integration requires a significant upgrade of the state-of-the-art of regular manufacturing processes. Simulation techniques, such as kinetic Monte Carlo (KMC) algorithms, provide an appealing environment to research and innovation in the field, specially in terms of time and funding costs. In the present study, KMC techniques are used, for the first time, to understand Ge front-end processing, specifically damage accumulation and amorphization produced by ion implantation and Solid Phase Epitaxial Regrowth (SPER) of the amorphized layers. First, Binary Collision Approximation (BCA) simulations are used to calculate the damage caused by every ion. The evolution of this damage over time is simulated using non-lattice, or Object, KMC (OKMC) in which only defects are considered. SPER is simulated through a Lattice KMC (LKMC) approach, being able to follow the evolution of the lattice atoms forming the amorphous/crystalline interface. With the amorphization model developed in this work, implemented into a multi-material process simulator, all these processes can be simulated. It has been possible to understand damage accumulation, from point defect generation up to full amorphous layers formation. This accumulation occurs in three differentiated regimes, starting at a slow formation rate of the damage regions, followed by a fast local relaxation of areas into the amorphous phase where both crystalline and amorphous phases coexist, ending in full amorphization of extended layers, where the accumulation rate saturates. This transition occurs when the damage concentration overcomes a certain threshold value, which is independent of the implantation conditions. When implanting ions at relatively high temperatures, dynamic annealing takes place, healing the previously induced damage and establishing a competition between damage generation and its dissolution. These effects become specially important for light ions, as B, for which the created damage is more diluted, smaller and differently distributed than that caused by implanting heavier ions, as Ge. This description successfully reproduces damage quantity and extension of amorphous layers caused by means of ion implantation reported in the literature. Recrystallization velocity of the previously amorphized sample strongly depends on the substrate orientation. The presented LKMC model has been able to explain these differences between orientations through a simple model, dominated by one only activation energy and different prefactors for the SPER rates depending on the neighboring configuration of the recrystallizing atoms. Twin defects formation appears as a consequence of this description, and are predominant for (111)Ge oriented grown substrates. This model is able to reproduce experimental results for different orientations, temperatures and times of evolution of the amorphous/crystalline interface reported by different authors. Preliminary parameterizations for the activation strain tensors are able to also provide a good match between simulations and reported experimental results for SPER velocities at different temperatures under the appliance of hydrostatic pressure. The studies presented in this thesis have helped to achieve a greater understanding of damage generation, evolution, amorphization and SPER mechanisms in Ge, and also provide a useful tool to continue research in this field.