7 resultados para rainfed rice systems
em Universidad Politécnica de Madrid
Resumo:
La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.
Resumo:
Application of nitrogen (N) fertilizers in agricultural soils increases the risk of N loss to the atmosphere in the form of ammonia (NH3), nitrous oxide (N2O) and nitric oxide (NO)and the water bodies as nitrate (NO3-). The implementation of agricultural management practices can affect these losses. In Mediterranean irrigation systems, the greatest losses of NO3-through leaching occur within the irrigation and the intercropperiod. One way to abate these losses during the intercrop period is the use of cover crops that absorb part of the residual N from the root zone (Gabriel and Quemada, 2011). Moreover, during the following crop, these species could be applied as amendments to the soil, providing both C and N to the soil. This effect of cover and catch crops on decreasing the pool of N potentially lost has focused primarily on NO3-leaching. The aim of this work was to evaluate the effect of cover crops on N2O emission during the in tercrop period in a maize system and its subsequent incorporation into the soil in the following maize crop.
Resumo:
Environmental problems related to the use of synthetic fertilizers and to organic waste management have led to increased interest in the use of organic materials as an alternative source of nutrients for crops, but this is also associated with N2O emissions. There has been an increasing amount of research into the effects of using different types of fertilization on N2O emissions under Mediterranean climatic conditions, but the findings have sometimes been rather contradictory. Available information also suggests that water management could exert a high influence on N2O emissions. In this context, we have reviewed the current scientific knowledge, including an analysis of the effect of fertilizer type and water management on direct N2O emissions. A meta-analysis of compliant reviewed experiments revealed significantly lower N2O emissions for organic as opposed to synthetic fertilizers (23% reduction). When organic materials were segregated in solid and liquid, only solid organic fertilizer emissions were significantly lower than those of synthetic fertilizers (28% reduction in cumulative emissions). The EF is similar to the IPCC factor in conventionally irrigated systems (0.98% N2O-N N applied−1), but one order of magnitude lower in rainfed systems (0.08%). Drip irrigation produces intermediate emission levels (0.66%). Differences are driven by Mediterranean agro-climatic characteristics, which include low soil organic matter (SOM) content and a distinctive rainfall and temperature pattern. Interactions between environmental and management factors and the microbial processes involved in N2O emissions are discussed in detail. Indirect emissions have not been fully accounted for, but when organic fertilizers are applied at similar N rates to synthetic fertilizers, they generally make smaller contributions to the leached NO3− pool. The most promising practices for reducing N2O through organic fertilization include: (i) minimizing water applications; (ii) minimizing bare soil; (iii) improving waste management; and (iv) tightening N cycling through N immobilization. The mitigation potential may be limited by: (i) residual effect; (ii) the long-term effects of fertilizers on SOM; (iii) lower yield-scaled performance; and (iv) total N availability from organic sources. Knowledge gaps identified in the review included: (i) insufficient sampling periods; (ii) high background emissions; (iii) the need to provide N2O EF and yield-scaled EF; (iv) the need for more research on specific cropping systems; and (v) the need for full GHG balances. In conclusion, the available information suggests a potential of organic fertilizers and water-saving practices to mitigate N2O emissions under Mediterranean climatic conditions, although further research is needed before it can be regarded as fully proven, understood and developed.
Resumo:
Current studies about nitrous oxide (N2O) emissions from legume crops have raised considerable doubt, observing a high variability between sites (0.03-7.09 kg N2O–N ha−1 y -1) [1]. This high variability has been associated to climate and soil conditions, legume species and soil management practices (e.g. conservation or conventional tillage). Conservation tillage (i.e. no tillage (NT) and minimum tillage (MT)) has spread during the last decades because promotes several positive effects (increase of soil organic content, reduction of soil erosion and enhancement of carbon (C) sequestration). However, these benefits could be partly counterbalanced by negative effects on the release of N2O emissions. Among processes responsible for N2O production and consumption in soils, denitrification plays an importantrole both in tilled and no-tilled ropping systems [2]. Recently, amplification of functional bacterial genes involved in denitrification is being used to examine denitrifiers abundance and evaluate their influence on N2O emissions. NirK and nirS are functional genes encoding the cytochrome cd1 and copper nitrite reductase, which is the key enzyme regulating the denitrification process.
Resumo:
Los modelos de simulación de cultivos permiten analizar varias combinaciones de laboreo-rotación y explorar escenarios de manejo. El modelo DSSAT fue evaluado bajo condiciones de secano en un experimento de campo de 16 años en la semiárida España central. Se evaluó el efecto del sistema de laboreo y las rotaciones basadas en cereales de invierno, en el rendimiento del cultivo y la calidad del suelo. Los modelos CERES y CROPGRO se utilizaron para simular el crecimiento y rendimiento del cultivo, mientras que el modelo DSSAT CENTURY se utilizó en las simulaciones de SOC y SN. Tanto las observaciones de campo como las simulaciones con CERES-Barley, mostraron que el rendimiento en grano de la cebada era mas bajo para el cereal continuo (BB) que para las rotaciones de veza (VB) y barbecho (FB) en ambos sistemas de laboreo. El modelo predijo más nitrógeno disponible en el laboreo convencional (CT) que en el no laboreo (NT) conduciendo a un mayor rendimiento en el CT. El SOC y el SN en la capa superficial del suelo, fueron mayores en NT que en CT, y disminuyeron con la profundidad en los valores tanto observados como simulados. Las mejores combinaciones para las condiciones de secano estudiadas fueron CT-VB y CT-FB, pero CT presentó menor contenido en SN y SOC que NT. El efecto beneficioso del NT en SOC y SN bajo condiciones Mediterráneas semiáridas puede ser identificado por observaciones de campo y por simulaciones de modelos de cultivos. La simulación del balance de agua en sistemas de cultivo es una herramienta útil para estudiar como el agua puede ser utilizado eficientemente. La comparación del balance de agua de DSSAT , con una simple aproximación “tipping bucket”, con el modelo WAVE más mecanicista, el cual integra la ecuación de Richard , es un potente método para valorar el funcionamiento del modelo. Los parámetros de suelo fueron calibrados usando el método de optimización global Simulated Annealing (SA). Un lisímetro continuo de pesada en suelo desnudo suministró los valores observados de drenaje y evapotranspiración (ET) mientras que el contenido de agua en el suelo (SW) fue suministrado por sensores de capacitancia. Ambos modelos funcionaron bien después de la optimización de los parámetros de suelo con SA, simulando el balance de agua en el suelo para el período de calibración. Para el período de validación, los modelos optimizados predijeron bien el contenido de agua en el suelo y la evaporación del suelo a lo largo del tiempo. Sin embargo, el drenaje fue predicho mejor con WAVE que con DSSAT, el cual presentó mayores errores en los valores acumulados. Esto podría ser debido a la naturaleza mecanicista de WAVE frente a la naturaleza más funcional de DSSAT. Los buenos resultados de WAVE indican que, después de la calibración, este puede ser utilizado como "benchmark" para otros modelos para periodos en los que no haya medidas de campo del drenaje. El funcionamiento de DSSAT-CENTURY en la simulación de SOC y N depende fuertemente del proceso de inicialización. Se propuso como método alternativo (Met.2) la inicialización de las fracciones de SOC a partir de medidas de mineralización aparente del suelo (Napmin). El Met.2 se comparó con el método de inicialización de Basso et al. (2011) (Met.1), aplicando ambos métodos a un experimento de campo de 4 años en un área en regadío de España central. Nmin y Napmin fueron sobreestimados con el Met.1, ya que la fracción estable obtenida (SOC3) en las capas superficiales del suelo fue más baja que con Met.2. El N lixiviado simulado fue similar en los dos métodos, con buenos resultados en los tratamientos de barbecho y cebada. El Met.1 subestimó el SOC en la capa superficial del suelo cuando se comparó con una serie observada de 12 años. El crecimiento y rendimiento del cultivo fueron adecuadamente simulados con ambos métodos, pero el N en la parte aérea de la planta y en el grano fueron sobreestimados con el Met.1. Los resultados variaron significativamente con las fracciones iniciales de SOC, resaltando la importancia del método de inicialización. El Met.2 ofrece una alternativa para la inicialización del modelo CENTURY, mejorando la simulación de procesos de N en el suelo. La continua emergencia de nuevas variedades de híbridos modernos de maíz limita la aplicación de modelos de simulación de cultivos, ya que estos nuevos híbridos necesitan ser calibrados en el campo para ser adecuados para su uso en los modelos. El desarrollo de relaciones basadas en la duración del ciclo, simplificaría los requerimientos de calibración facilitando la rápida incorporación de nuevos cultivares en DSSAT. Seis híbridos de maiz (FAO 300 hasta FAO 700) fueron cultivados en un experimento de campo de dos años en un área semiárida de regadío en España central. Los coeficientes genéticos fueron obtenidos secuencialmente, comenzando con los parámetros de desarrollo fenológico (P1, P2, P5 and PHINT), seguido de los parámetros de crecimiento del cultivo (G2 and G3). Se continuó el procedimiento hasta que la salida de las simulaciones estuvo en concordancia con las observaciones fenológicas de campo. Después de la calibración, los parámetros simulados se ajustaron bien a los parámetros observados, con bajos RMSE en todos los casos. Los P1 y P5 calibrados, incrementaron con la duración del ciclo. P1 fue una función lineal del tiempo térmico (TT) desde emergencia hasta floración y P5 estuvo linealmente relacionada con el TT desde floración a madurez. No hubo diferencias significativas en PHINT entre híbridos de FAO-500 a 700 , ya que tuvieron un número de hojas similar. Como los coeficientes fenológicos estuvieron directamente relacionados con la duración del ciclo, sería posible desarrollar rangos y correlaciones que permitan estimar dichos coeficientes a partir de la clasificación del ciclo. ABSTRACT Crop simulation models allow analyzing various tillage-rotation combinations and exploring management scenarios. DSSAT model was tested under rainfed conditions in a 16-year field experiment in semiarid central Spain. The effect of tillage system and winter cereal-based rotations on the crop yield and soil quality was evaluated. The CERES and CROPGRO models were used to simulate crop growth and yield, while the DSSAT CENTURY was used in the SOC and SN simulations. Both field observations and CERES-Barley simulations, showed that barley grain yield was lower for continuous cereal (BB) than for vetch (VB) and fallow (FB) rotations for both tillage systems. The model predicted higher nitrogen availability in the conventional tillage (CT) than in the no tillage (NT) leading to a higher yield in the CT. The SOC and SN in the top layer, were higher in NT than in CT, and decreased with depth in both simulated and observed values. The best combinations for the dry land conditions studied were CT-VB and CT-FB, but CT presented lower SN and SOC content than NT. The beneficial effect of NT on SOC and SN under semiarid Mediterranean conditions can be identified by field observations and by crop model simulations. The simulation of the water balance in cropping systems is a useful tool to study how water can be used efficiently. The comparison of DSSAT soil water balance, with a simpler “tipping bucket” approach, with the more mechanistic WAVE model, which integrates Richard’s equation, is a powerful method to assess model performance. The soil parameters were calibrated by using the Simulated Annealing (SA) global optimizing method. A continuous weighing lysimeter in a bare fallow provided the observed values of drainage and evapotranspiration (ET) while soil water content (SW) was supplied by capacitance sensors. Both models performed well after optimizing soil parameters with SA, simulating the soil water balance components for the calibrated period. For the validation period, the optimized models predicted well soil water content and soil evaporation over time. However, drainage was predicted better by WAVE than by DSSAT, which presented larger errors in the cumulative values. That could be due to the mechanistic nature of WAVE against the more functional nature of DSSAT. The good results from WAVE indicate that, after calibration, it could be used as benchmark for other models for periods when no drainage field measurements are available. The performance of DSSAT-CENTURY when simulating SOC and N strongly depends on the initialization process. Initialization of the SOC pools from apparent soil N mineralization (Napmin) measurements was proposed as alternative method (Met.2). Method 2 was compared to the Basso et al. (2011) initialization method (Met.1), by applying both methods to a 4-year field experiment in a irrigated area of central Spain. Nmin and Napmin were overestimated by Met.1, since the obtained stable pool (SOC3) in the upper layers was lower than from Met.2. Simulated N leaching was similar for both methods, with good results in fallow and barley treatments. Method 1 underestimated topsoil SOC when compared with a 12-year observed serial. Crop growth and yield were properly simulated by both methods, but N in shoots and grain were overestimated by Met.1. Results varied significantly with the initial SOC pools, highlighting the importance of the initialization procedure. Method 2 offers an alternative to initialize the CENTURY model, enhancing the simulation of soil N processes. The continuous emergence of new varieties of modern maize hybrids limits the application of crop simulation models, since these new hybrids should be calibrated in the field to be suitable for model use. The development of relationships based on the cycle duration, would simplify the calibration requirements facilitating the rapid incorporation of new cultivars into DSSAT. Six maize hybrids (FAO 300 through FAO 700) were grown in a 2-year field experiment in a semiarid irrigated area of central Spain. Genetic coefficients were obtained sequentially, starting with the phenological development parameters (P1, P2, P5 and PHINT), followed by the crop growth parameters (G2 and G3). The procedure was continued until the simulated outputs were in good agreement with the field phenological observations. After calibration, simulated parameters matched observed parameters well, with low RMSE in most cases. The calibrated P1 and P5 increased with the duration of the cycle. P1 was a linear function of the thermal time (TT) from emergence to silking and P5 was linearly related with the TT from silking to maturity . There were no significant differences in PHINT between hybrids from FAO-500 to 700 , as they had similar leaf number. Since phenological coefficients were directly related with the cycle duration, it would be possible to develop ranges and correlations which allow to estimate such coefficients from the cycle classification.
Resumo:
Conservation tillage and crop rotation have spread during the last decades because promotes several positive effects (increase of soil organic content, reduction of soil erosion, and enhancement of carbon sequestration) (Six et al., 2004). However, these benefits could be partly counterbalanced by negative effects on the release of nitrous oxide (N2O) (Linn and Doran, 1984). There is a lack of data on long-term tillage system study, particularly in Mediterranean agro-ecosystems. The aim of this study was to evaluate the effects of long-term (>17 year) tillage systems (no tillage (NT), minimum tillage (MT) and conventional tillage (CT)); and crop rotation (wheat (W)-vetch (V)-barley (B)) versus wheat monoculture (M) on N2O emissions. Additionally, Yield-scaled N2O emissions (YSNE) and N uptake efficiency (NUpE) were assessed for each treatment.
Resumo:
Agricultural water management needs to evolve in view of increased water scarcity, especially when farming and natural protected areas are closely linked. In the study site of Don?ana (southern Spain), water is shared by rice producers and a world heritage biodiversity ecosystem. Our aim is to contribute to defining adaptation strategies that may build resilience to increasing water scarcity and minimize water conflicts among agricultural and natural systems. The analytical framework links a participatory process with quantitative methods to prioritize the adaptation options. Bottom-up proposed adaptation measures are evaluated by a multi-criteria analysis (MCA) that includes both socioeconomic criteria and criteria of the ecosystem services affected by the adaptation options. Criteria weights are estimated by three different methods?analytic hierarchy process, Likert scale and equal weights?that are then compared. Finally, scores from an MCA are input into an optimization model used to determine the optimal land-use distribution in order to maximize utility and land-use diversification according to different scenarios of funds and water availability. While our results show a spectrum of perceptions of priorities among stakeholders, there is one overriding theme that is to define a way to restore part of the rice fields to natural wetlands. These results hold true under the current climate scenario and evenmore so under an increased water scarcity scenario.