12 resultados para radiative forcing

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transitionprobabilities and oscillatorstrengths of 176 spectral lines with astrophysical interest arising from 5d10ns (n = 7,8), 5d10np (n = 6,7), 5d10nd (n = 6,7), 5d105f, 5d105g, 5d10nh (n = 6,7,8), 5d96s2, and 5d96s6p configurations, and radiativelifetimes for 43 levels of PbIV, have been calculated. These values were obtained in intermediate coupling (IC) and using relativistic Hartree–Fock calculations including core-polarization effects. For the IC calculations, we use the standard method of least-square fitting from experimental energy levels by means of the Cowan computer code. The inclusion in these calculations of the 5d107p and 5d105f configurations has facilitated a complete assignment of the energy levels in the PbIV. Transitionprobabilities, oscillatorstrengths, and radiativelifetimes obtained are generally in good agreement with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We will present calculations of opacities for matter under LTE conditions. Opacities are needed in radiation transport codes to study processes like Inertial Confinement Fusion and plasma amplifiers in X-ray secondary sources. For the calculations we use the code BiGBART, with either a hydrogenic approximation with j-splitting or self-consistent data generated with the atomic physics code FAC. We calculate the atomic structure, oscillator strengths, radiative transition energies, including UTA computations, and photoionization cross-sections. A DCA model determines the configurations considered in the computation of the opacities. The opacities obtained with these two models are compared with experimental measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present our fast ionisation routine used to study transient softX-raylasers with ARWEN, a two-dimensional hydrodynamic code incorporating adaptative mesh refinement (AMR) and radiative transport. We compute global rates between ion stages assuming an effective temperature between singly-excited levels of each ion. A two-step method is used to obtain in a straightforward manner the variation of ion populations over long hydrodynamic time steps. We compare our model with existing theoretical results both stationary and transient, finding that the discrepancies are moderate except for large densities. We simulate an existing Molybdenum Ni-like transient softX-raylaser with ARWEN. Use of the fast ionisation routine leads to a larger increase in temperature and a larger gain zone than when LTE datatables are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To achieve high efficiency, the intermediate band (IB) solar cell must generate photocurrent from sub-bandgap photons at a voltage higher than that of a single contributing sub-bandgap photon. To achieve the latter, it is necessary that the IB levels be properly isolated from the valence and conduction bands. We prove that this is not the case for IB cells formed with the confined levels of InAs quantum dots (QDs) in GaAs grown so far due to the strong density of internal thermal photons at the transition energies involved. To counteract this, the QD must be smaller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose to study the stability properties of an air flow wake forced by a dielectric barrier discharge (DBD) actuator, which is a type of electrohydrodynamic (EHD) actuator. These actuators add momentum to the flow around a cylinder in regions close to the wall and, in our case, are symmetrically disposed near the boundary layer separation point. Since the forcing frequencies, typical of DBD, are much higher than the natural shedding frequency of the flow, we will be considering the forcing actuation as stationary. In the first part, the flow around a circular cylinder modified by EHD actuators will be experimentally studied by means of particle image velocimetry (PIV). In the second part, the EHD actuators have been numerically implemented as a boundary condition on the cylinder surface. Using this boundary condition, the computationally obtained base flow is then compared with the experimental one in order to relate the control parameters from both methodologies. After validating the obtained agreement, we study the Hopf bifurcation that appears once the flow starts the vortex shedding through experimental and computational approaches. For the base flow derived from experimentally obtained snapshots, we monitor the evolution of the velocity amplitude oscillations. As to the computationally obtained base flow, its stability is analyzed by solving a global eigenvalue problem obtained from the linearized Navier–Stokes equations. Finally, the critical parameters obtained from both approaches are compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined matrix elements for all experimental configurations of Ca III, including the 3s3p63d configuration. These values have been obtained using intermediate coupling (IC). For these IC calculations, we have used the standard method of least-squares fitting from the experimental energy levels, using the computer code developed by Robert Cowan. In this paper, using these matrix elements, we report the calculated values of the Ca III Stark widths and shifts for 148 spectral lines, of 56 Ca III spectral line transition probabilities and of eight radiative lifetimes of Ca III levels. The Stark widths and shifts, calculated using the Griem semi-empirical approach, correspond to the spectral lines of Ca III and are presented for an electron density of 1017 cm?3 and temperatures T = 1.0?10.0 (×104 K). The theoretical trends of the Stark broadening parameter versus the temperature are presented for transitions that are of astrophysical interest. There is good agreement between our calculations, for transition probabilities and radiative lifetimes, and the experimental values presented in the literature. We have not been able to find any values for the Stark parameters in the references.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated for a wide range of plasma conditions which cover situations where corona, local thermodynamic and non-local thermodynamic equilibrium regimes are found. An analysis of the influence of the thermodynamic regime on these magnitudes is also carried out by means of comparisons of the results obtained from collisional-radiative, corona or Saha–Boltzmann equations. All the calculations presented in this work were performed using ABAKO/RAPCAL code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range of plasma conditions considered in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiative shock waves play a pivotal role in the transport energy into the stellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible laboratory conditions and their study has been highlighted as an area requiring further experimental investigations. Low density material with high atomic mass is suitable to achieve radiative regime, and, therefore, low density xenon gas is commonly used for the medium in which the radiative shocks such as radiative blast waves propagate. In this work, by means of collisional-radiative steady-state calculations, a characterization and an analysis of microscopic magnitudes of laboratory blast waves launched in xenon clusters are made. Thus, for example, the average ionization, the charge state distribution, the cooling time or photon mean free paths are studied. Furthermore, for a particular experiment, the effects of the self-absorption and self-emission in the specific intensity emitted by the shock front and that is going through the radiative precursor are investigated. Finally, for that experiment, since the electron temperature is not measured experimentally, an estimation of this magnitude is made both for the shock shell and the radiative precursor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiative shock waves play a pivotal role in the transport energy into the stellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible laboratory conditions and their study has been highlighted as an area requiring further experimental investigations. Low density material with high atomic mass is suitable to achieve radiative regime, and, therefore, low density xenon plasmas are commonly used for the medium in which the radiative shocks propagate. The knowledge of the plasma radiative properties is crucial for the correct understanding and for the hydrodynamic simulations of radiative shocks. In this work, we perform an analysis of the radiative properties of xenon plasmas in a range of matter densities and electron temperatures typically found in laboratory experiments of radiative shocks launched in xenon plasmas. Furthermore, for a particular experiment, our analysis is applied to make a diagnostics of the electron temperatures of the radiative shocks since they could not be experimentally measured

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate 1.81 eV GaInP solar cells approaching the Shockley-Queisser limit with 20.8% solar conversion efficiency, 8% external radiative efficiency, and 80–90% internal radiative efficiency at one-sun AM1.5 global conditions. Optically enhanced voltage through photon recycling that improves light extraction was achieved using a back metal reflector. This optical enhancement was realized at one-sun currents when the non-radiative Sah-Noyce-Shockley junction recombination current was reduced by placing the junction at the back of the cell in a higher band gap AlGaInP layer. Electroluminescence and dark current-voltage measurements show the separate effects of optical management and non-radiative dark current reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonradiative recombination in inverted GaInP junctions is dramatically reduced using a rear-heterojunction design rather than the more traditional thin-emitter homojunction design. When this GaInP junction design is included in inverted multijunction solar cells, the high radiative efficiency translates into both higher subcell voltage and high luminescence coupling to underlying subcells, both of which contribute to improved performance. Subcell voltages within two and four junction devices are measured by electroluminescence and the internal radiative efficiency is quantified as a function of recombination current using optical modeling. The performance of these concentrator multijunction devices is compared with the Shockley–Queisser detailed-balance radiative limit, as well as an internal radiative limit, which considers the effects of the actual optical environment in which a perfect junction may exist.