4 resultados para query reformulation, search pattern, search strategy
em Universidad Politécnica de Madrid
Resumo:
We propose the use of the "infotaxis" search strategy as the navigation system of a robotic platform, able to search and localize infectious foci by detecting the changes in the profile of volatile organic compounds emitted by and infected plant. We builded a simple and cost effective robot platform that substitutes odour sensors in favour of light sensors and study their robustness and performance under non ideal conditions such as the exitence of obstacles due to land topology or weeds.
Resumo:
The access to medical literature collections such as PubMed, MedScape or Cochrane has been increased notably in the last years by the web-based tools that provide instant access to the information. However, more sophisticated methodologies are needed to exploit efficiently all that information. The lack of advanced search methods in clinical domain produce that even using well-defined questions for a particular disease, clinicians receive too many results. Since no information analysis is applied afterwards, some relevant results which are not presented in the top of the resultant collection could be ignored by the expert causing an important loose of information. In this work we present a new method to improve scientific article search using patient information for query generation. Using federated search strategy, it is able to simultaneously search in different resources and present a unique relevant literature collection. And applying NLP techniques it presents semantically similar publications together, facilitating the identification of relevant information to clinicians. This method aims to be the foundation of a collaborative environment for sharing clinical knowledge related to patients and scientific publications.
Resumo:
This paper describes the participation of DAEDALUS at the LogCLEF lab in CLEF 2011. This year, the objectives of our participation are twofold. The first topic is to analyze if there is any measurable effect on the success of the search queries if the native language and the interface language chosen by the user are different. The idea is to determine if this difference may condition the way in which the user interacts with the search application. The second topic is to analyze the user context and his/her interaction with the system in the case of successful queries, to discover out any relation among the user native language, the language of the resource involved and the interaction strategy adopted by the user to find out such resource. Only 6.89% of queries are successful out of the 628,607 queries in the 320,001 sessions with at least one search query in the log. The main conclusion that can be drawn is that, in general for all languages, whether the native language matches the interface language or not does not seem to affect the success rate of the search queries. On the other hand, the analysis of the strategy adopted by users when looking for a particular resource shows that people tend to use the simple search tool, frequently first running short queries build up of just one specific term and then browsing through the results to locate the expected resource
Resumo:
Automatic 2D-to-3D conversion is an important application for filling the gap between the increasing number of 3D displays and the still scant 3D content. However, existing approaches have an excessive computational cost that complicates its practical application. In this paper, a fast automatic 2D-to-3D conversion technique is proposed, which uses a machine learning framework to infer the 3D structure of a query color image from a training database with color and depth images. Assuming that photometrically similar images have analogous 3D structures, a depth map is estimated by searching the most similar color images in the database, and fusing the corresponding depth maps. Large databases are desirable to achieve better results, but the computational cost also increases. A clustering-based hierarchical search using compact SURF descriptors to characterize images is proposed to drastically reduce search times. A significant computational time improvement has been obtained regarding other state-of-the-art approaches, maintaining the quality results.