12 resultados para quantum confinement effects
em Universidad Politécnica de Madrid
Resumo:
Photoreflectance (PR) is a convenient characterization tool able to reveal optoelectronic properties of semiconductor materials and structures. It is a simple non-destructive and contactless technique which can be used in air at room temperature. We will present experimental results of the characterization carried out by means of PR on different types of advanced photovoltaic (PV) structures, including quantum-dot-based prototypes of intermediate band solar cells, quantum-well structures, highly mismatched alloys, and III?V-based multi-junction devices, thereby demonstrating the suitability of PR as a powerful diagnostic tool. Examples will be given to illustrate the value of this spectroscopic technique for PV including (i) the analysis of the PR spectra in search of critical points associated to absorption onsets; (ii) distinguishing signatures related to quantum confinement from those originating from delocalized band states; (iii) determining the intensity of the electric field related to built-in potentials at interfaces according to the Franz?Keldysh (FK) theory; and (v) determining the nature of different oscillatory PR signals among those ascribed to FK-oscillations, interferometric and photorefractive effects. The aim is to attract the interest of researchers in the field of PV to modulation spectroscopies, as they can be helpful in the analysis of their devices.
Resumo:
The basics of the self-assembled growth of GaN nanorods on Si(111) are reviewed. Morphology differences and optical properties are compared to those of GaN layers grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanorods grown on Si(111) is described. In addition, the inclusion of InGaN quantum disk structures into selfassembled GaN nanorods show clear confinement effects as a function of the quantum disk thickness. In order to overcome the properties dispersion and the intrinsic inhomogeneous nature of the self-assembled growth, the selective area growth of GaN nanorods on both, c-plane and a-plane GaN on sapphire templates, is addressed, with special emphasis on optical quality and morphology differences. The analysis of the optical emission from a single InGaN quantum disk is shown for both polar and non-polar nanorod orientations
Resumo:
The use of GaAsSbN capping layers on InAs/GaAs quantum dots (QDs) has recently been proposed for micro- and optoelectronic applications for their ability to independently tailor electron and hole confinement potentials. However, there is a lack of knowledge about the structural and compositional changes associated with the process of simultaneous Sb and N incorporation. In the present work, we have characterized using transmission electron microscopy techniques the effects of adding N in the GaAsSb/InAs/GaAs QD system. Firstly, strain maps of the regions away from the InAs QDs had revealed a huge reduction of the strain fields with the N incorporation but a higher inhomogeneity, which points to a composition modulation enhancement with the presence of Sb-rich and Sb-poor regions in the range of a few nanometers. On the other hand, the average strain in the QDs and surroundings is also similar in both cases. It could be explained by the accumulation of Sb above the QDs, compensating the tensile strain induced by the N incorporation together with an In-Ga intermixing inhibition. Indeed, compositional maps of column resolution from aberration-corrected Z-contrast images confirmed that the addition of N enhances the preferential deposition of Sb above the InAs QD, giving rise to an undulation of the growth front. As an outcome, the strong redshift in the photoluminescence spectrum of the GaAsSbN sample cannot be attributed only to the N-related reduction of the conduction band offset but also to an enhancement of the effect of Sb on the QD band structure.
Resumo:
The origin of the modified optical properties of InAs/GaAs quantum dots (QD) capped with a thin GaAs1−xSbx layer is analyzed in terms of the band structure. To do so, the size, shape, and composition of the QDs and capping layer are determined through cross-sectional scanning tunnelling microscopy and used as input parameters in an 8 × 8 k·p model. As the Sb content is increased, there are two competing effects determining carrier confinement and the oscillator strength: the increased QD height and reduced strain on one side and the reduced QD-capping layer valence band offset on the other. Nevertheless, the observed evolution of the photoluminescence (PL) intensity with Sb cannot be explained in terms of the oscillator strength between ground states, which decreases dramatically for Sb > 16%, where the band alignment becomes type II with the hole wavefunction localized outside the QD in the capping layer. Contrary to this behaviour, the PL intensity in the type II QDs is similar (at 15 K) or even larger (at room temperature) than in the type I Sb-free reference QDs. This indicates that the PL efficiency is dominated by carrier dynamics, which is altered by the presence of the GaAsSb capping layer. In particular, the presence of Sb leads to an enhanced PL thermal stability. From the comparison between the activation energies for thermal quenching of the PL and the modelled band structure, the main carrier escape mechanisms are suggested. In standard GaAs-capped QDs, escape of both electrons and holes to the GaAs barrier is the main PL quenching mechanism. For small-moderate Sb (<16%) for which the type I band alignment is kept, electrons escape to the GaAs barrier and holes escape to the GaAsSb capping layer, where redistribution and retraping processes can take place. For Sb contents above 16% (type-II region), holes remain in the GaAsSb layer and the escape of electrons from the QD to the GaAs barrier is most likely the dominant PL quenching mechanism. This means that electrons and holes behave dynamically as uncorrelated pairs in both the type-I and type-II structures.
Resumo:
We present a study of the optical properties of GaN/AlN and InGaN/GaN quantum dot (QD) superlattices grown via plasma-assisted molecular-beam epitaxy, as compared to their quantum well (QW) counterparts. The three-dimensional/two-dimensional nature of the structures has been verified using atomic force microscopy and transmission electron microscopy. The QD superlattices present higher internal quantum efficiency as compared to the respective QWs as a result of the three-dimensional carrier localization in the islands. In the QW samples, photoluminescence (PL) measurements point out a certain degree of carrier localization due to structural defects or thickness fluctuations, which is more pronounced in InGaN/GaN QWs due to alloy inhomogeneity. In the case of the QD stacks, carrier localization on potential fluctuations with a spatial extension smaller than the QD size is observed only for the InGaN QD-sample with the highest In content (peak emission around 2.76 eV). These results confirm the efficiency of the QD three-dimensional confinement in circumventing the potential fluctuations related to structural defects or alloy inhomogeneity. PL excitation measurements demonstrate efficient carrier transfer from the wetting layer to the QDs in the GaN/AlN system, even for low QD densities (~1010 cm-3). In the case of InGaN/GaN QDs, transport losses in the GaN barriers cannot be discarded, but an upper limit to these losses of 15% is deduced from PL measurements as a function of the excitation wavelength.
Resumo:
Self-assembled InGaAs quantum dots show unique physical properties such as three dimensional confinement, high size homogeneity, high density and low number of dislocations. They have been extensively used in the active regions of laser devices for optical communications applications [1]. Therefore, buried quantum dots (BQDs) embedded in wider band gap materials have been normally studied. The wave confinement in all directions and the stress field around the dot affect both optical and electrical properties [2, 3]. However, surface quantum dots (SQDs) are less affected by stress, although their optical and electrical characteristics have a strong dependence on surface fluctuation. Thus, they can play an important role in sensor applications
Resumo:
The optical and structural properties of InAs/GaAs quantum dots (QD) are strongly modified through the use of a thin (~ 5 nm) GaAsSb(N) capping layer. In the case of GaAsSb-capped QDs, cross-sectional scanning tunnelling microscopy measurements show that the QD height can be controllably tuned through the Sb content up to ~ 14 % Sb. The increased QD height (together with the reduced strain) gives rise to a strong red shift and a large enhancement of the photoluminescence (PL) characteristics. This is due to improved carrier confinement and reduced sensitivity of the excitonic bandgap to QD size fluctuations within the ensemble. Moreover, the PL degradation with temperature is strongly reduced in the presence of Sb. Despite this, emission in the 1.5 !lm region with these structures is only achieved for high Sb contents and a type-II band alignment that degrades the PL. Adding small amounts of N to the GaAsSb capping layer allows to progressively reduce the QD-barrier conduction band offset. This different strategy to red shift the PL allows reaching 1.5 !lm with moderate Sb contents, keeping therefore a type-I alignment. Nevertheless, the PL emission is progressively degraded when the N content in the capping layer is increased
Resumo:
The aim of inertial confinement fusion is the production of energy by the fusion of thermonuclear fuel (deuterium-tritium) enclosed in a spherical target due to its implosion. In the direct-drive approach, the energy needed to spark fusion reactions is delivered by the irradiation of laser beams that leads to the ablation of the outer shell of the target (the so-called ablator). As a reaction to this ablation process, the target is accelerated inwards, and, provided that this implosion is sufficiently strong a symmetric, the requirements of temperature and pressure in the center of the target are achieved leading to the ignition of the target (fusion). One of the obstacles capable to prevent appropriate target implosions takes place in the ablation region where any perturbation can grow even causing the ablator shell break, due to the ablative Rayleigh-Taylor instability. The ablative Rayleigh-Taylor instability has been extensively studied throughout the last 40 years in the case where the density/temperature profiles in the ablation region present a single front (the ablation front). Single ablation fronts appear when the ablator material has a low atomic number (deuterium/tritium ice, plastic). In this case, the main mechanism of energy transport from the laser energy absorption region (low density plasma) to the ablation region is the electron thermal conduction. However, recently, the use of materials with a moderate atomic number (silica, doped plastic) as ablators, with the aim of reducing the target pre-heating caused by suprathermal electrons generated by the laser-plasma interaction, has demonstrated an ablation region composed of two ablation fronts. This fact appears due to increasing importance of radiative effects in the energy transport. The linear theory describing the Rayleigh-Taylor instability for single ablation fronts cannot be applied for the stability analysis of double ablation front structures. Therefore, the aim of this thesis is to develop, for the first time, a linear stability theory for this type of hydrodynamic structures.
Resumo:
This paper presents the results of cyclic loading tests on two large-scale reinforced concrete structural walls that were conducted at Purdue University. One of the walls had confinement reinforcement meeting ACI-318-11 requirements while the other wall did not have any confinement reinforcement. The walls were tested as part of a larger study aimed at indentifying parameters affecting failure modes observed to limit the drift capacity of structural walls in Chile during the Maule Earthquake of 2010. These failure modes include out-of-plane buckling (of the wall rather tan individual reinforcing bars), compression failure, and bond failure. This paper discusses the effects of confinement on failure mode. Distributions of unit strain and curvature obtained with a dense array of non-contact coordinate-tracking targets are also presented.
Resumo:
On the basis of optical characterization experiments and an eight band kp model, we have studied the effect of Sb incorporation on the electronic structure of InAs quantum dots (QDs). We have found that Sb incorporation in InAs QDs shifts the hole wave function to the center of the QD from the edges of the QD where it is otherwise pinned down by the effects of shear stress. The observed changes in the ground-state energy cannot merely be explained by a composition change upon Sb exposure but can be accounted for when the change in lateral size is taken into consideration. The Sb distribution inside the QDs produces distinctive changes in the density of states, particularly, in the separation between excitation shells. We find a 50% increase in the thermal escape activation energy compared with reference InAs quantum dots as well as an increment of the fundamental transition decay time with Sb incorporation. Furthermore, we find that Sb incorporation into quantum dots is strongly nonlinear with coverage, saturating at low doses. This suggests the existence of a solubility limit of the Sb incorporation into the quantum dots during growth.
Resumo:
A colloidal deposition technique is presented to construct long-range ordered hybrid arrays of self-assembled quantum dots and metal nanoparticles. Quantum dots are promising for novel opto-electronic devices but, in most cases, their optical transitions of interest lack sufficient light absorption to provide a significant impact in their implementation. A potential solution is to couple the dots with localized plasmons in metal nanoparticles. The extreme confinement of light in the near-field produced by the nanoparticles can potentially boost the absorption in the quantum dots by up to two orders of magnitude. In this work, light extinction measurements are employed to probe the plasmon resonance of spherical gold nanoparticles in lead sulfide colloidal quantum dots and amorphous silicon thin-films. Mie theory computations are used to analyze the experimental results and determine the absorption enhancement that can be generated by the highly intense near-field produced in the vicinity of the gold nanoparticles at their surface plasmon resonance. The results presented here are of interest for the development of plasmon-enhanced colloidal nanostructured photovoltaic materials, such as colloidal quantum dot intermediate-band solar cells.
Resumo:
The electrical and optical coupling between subcells in a multijunction solar cell affects its external quantum efficiency (EQE) measurement. In this study, we show how a low breakdown voltage of a component subcell impacts the EQE determination of a multijunction solar cell and demands the use of a finely adjusted external voltage bias. The optimum voltage bias for the EQE measurement of a Ge subcell in two different GaInP/GaInAs/Ge triple-junction solar cells is determined both by sweeping the external voltage bias and by tracing the I–V curve under the same light bias conditions applied during the EQE measurement. It is shown that the I–V curve gives rapid and valuable information about the adequate light and voltage bias needed, and also helps to detect problems associated with non-ideal I–V curves that might affect the EQE measurement. The results also show that, if a non-optimum voltage bias is applied, a measurement artifact can result. Only when the problems associated with a non-ideal I–V curve and/or a low breakdown voltage have been discarded, the measurement artifacts, if any, can be attributed to other effects such as luminescent coupling between subcells.