5 resultados para pyruvic acid
em Universidad Politécnica de Madrid
Resumo:
This work studies the physiology of Schizosaccharomyces pombe strain 938 in the production of white wine with high malic acid levels as the sole fermentative yeast, as well as in mixed and sequential fermentations with Saccharomyces cerevisiae Cru Blanc. The induction of controlled maloalcoholic fermentation through the use of Schizosaccharomyces spp. is now being viewed with much interest. The acetic, malic and pyruvic acid concentrations, relative density and pH of the musts were measured over the entire fermentation period. In all fermentations in which Schizo. pombe 938 was involved, nearly all the malic acid was consumed and moderate acetic concentrations produced. The urea content and alcohol level of these wines were notably lower than in those made with Sacch. cerevisiae Cru Blanc alone. The pyruvic acid concentration was significantly higher in Schizo. pombe fermentations. The sensorial properties of the different final wines varied widely.
Resumo:
This work has studied the production of stable pyranoanthocyanin pigments during fermentation using S. pombe and Saccharomyces cerevisiae. Along the fermentation, anthocyanins were determined by HPLC-DAD/MS, acetaldehyde was measured using GC-FID and pyruvic acid was quantified by enzymatic tests. Results show that S. pombe strains produce higher amounts of pyruvic acid, and therefore also of vitisin A, than Saccharomyces controls.
Resumo:
The Schizosaccharomyces strains consumed less primary amino nitrogen and produced less urea and more pyruvic acid than other Saccharomyces species. Further, three of the four Schizosaccharomyces strains completed the breakdown of malic acid by day 4 of fermentation. The main negative effect of the use of Schizosaccharomyces was strong acetic acid production. The Schizosaccharomyces strains that produced most pyruvic acid (938 and 936) were associated with better ?wine? colour than the remaining yeasts. The studied Schizosaccharomyces could therefore be of oenological interest.
Resumo:
Auxin is associated with the regulation of virtually every aspect of plant growth and development. Many previous genetic and biochemical studies revealed that, among the proposed routes for the production of auxin, the so-called indole-3-pyruvic acid (IPA) pathway is the main source for indole-3-acetic acid (IAA) in plants. The IPA pathway involves the action of 2 classes of enzymes, tryptophan-pyruvate aminotransferases (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1(TAA1)/TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR)) and flavin monooxygenases (YUCCA). Both enzyme classes appear to be encoded by small gene families in Arabidopsis consisting of 5 and 11 members, respectively. We recently showed that it is possible to induce transcript accumulation of 2 YUCCA genes, YUC8 and YUC9, by methyl jasmonate treatment. Both gene products were demonstrated to contribute to auxin biosynthesis in planta.1 Here we report that the overexpression of YUC8 as well as YUC9 led to strong lignification of plant aerial tissues. Furthermore, new evidence indicates that this abnormally strong secondary growth is linked to increased levels of ethylene production.
Resumo:
This work examines the physiology of a new commercial strain of Torulaspora delbrueckii in the production of red wine following different combined fermentation strategies. For a detailed comparison, several yeast metabolites and the strains implantation were measured over the entire fermentation period. In all fermentations in which T. delbrueckii was involved, the ethanol concentration was reduced; some malic acid was consumed; more pyruvic acid was released, and fewer amounts of higher alcohols were produced. The sensorial properties of final wines varied widely, emphasising the structure of wine in sequential fermentations with T. delbrueckii. These wines presented the maximum overall impression and were preferred by tasters. Semi-industrial assays were carried out confirming these differences at a higher scale. No important differences were observed in volatile aroma composition between fermentations. However, differences in mouthfeel properties were observed in semi-industrial fermentations, which were correlated with an increase in the mannoprotein content of red wines fermented sequentially with T. delbrueckii.